Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 13(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36983711

RESUMO

(1) Background: Although the application of modern diagnostic tests and vaccination against human papillomavirus has markedly reduced the incidence and mortality of early cervical cancer, advanced cervical cancer still has a high death rate worldwide. Glycosylation is closely associated with tumor invasion, metabolism, and the immune response. This study explored the relationship among glycosylation-related genes, the immune microenvironment, and the prognosis of cervical cancer. (2) Methods and results: Clinical information and glycosylation-related genes of cervical cancer patients were downloaded from the TCGA database and the Molecular Signatures Database. Patients in the training cohort were split into two subgroups using consensus clustering. A better prognosis was observed to be associated with a high immune score, level, and status using ESTIMATE, CIBERSORT, and ssGSEA analyses. The differentially expressed genes were revealed to be enriched in proteoglycans in cancer and the cytokine-cytokine receptor interaction, as well as in the PI3K/AKT and the Hippo signaling pathways according to functional analyses, including GO, KEGG, and PPI. The prognostic risk model generated using the univariate Cox regression analysis, LASSO algorithm and multivariate Cox regression analyses, and prognostic nomogram successfully predicted the survival and prognosis of cervical cancer patients. (3) Conclusions: Glycosylation-related genes are correlated with the immune microenvironment of cervical cancer and show promising clinical prediction value.

2.
J Pers Med ; 12(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36556252

RESUMO

Cervical cancer (CC) is the second most common female cancer. Excellent clinical outcomes have been achieved with current screening tests and medical treatments in the early stages, while the advanced stage has a poor prognosis. Nicotinamide adenine dinucleotide (NAD+) metabolism is implicated in cancer development and has been enhanced as a new therapeutic concept for cancer treatment. This study set out to identify an NAD+ metabolic-related gene signature for the prospect of cervical cancer survival and prognosis. Tissue profiles and clinical characteristics of 293 cervical cancer patients and normal tissues were downloaded from The Cancer Genome Atlas database to obtain NAD+ metabolic-related genes. Based on the differentially expressed NAD+ metabolic-related genes, cervical cancer patients were divided into two subgroups (Clusters 1 and 2) using consensus clustering. In total, 1404 differential genes were acquired from the clinical data of these two subgroups. From the NAD+ metabolic-related genes, 21 candidate NAD+ metabolic-related genes (ADAMTS10, ANGPTL5, APCDD1L, CCDC85A, CGREF1, CHRDL2, CRP, DENND5B, EFS, FGF8, P4HA3, PCDH20, PCDHAC2, RASGRF2, S100P, SLC19A3, SLC6A14, TESC, TFPI, TNMD, ZNF229) were considered independent indicators of cervical cancer prognosis through univariate and multivariate Cox regression analyses. The 21-gene signature was significantly different between the low- and high-risk groups in the training and validation datasets. Our work revealed the promising clinical prediction value of NAD+ metabolic-related genes in cervical cancer.

3.
Front Oncol ; 11: 640276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113562

RESUMO

Growing evidences suggest that long non-coding RNAs (lncRNAs) are closely correlated to the development of human cancer, such as colorectal cancer (CRC). A previous report suggested that DLEU1 accelerated CRC development. However, DLEU1's underlying mechanism in CRC remains unclear. In our study, the level of DLEU1 in CRC tissues is investigated by qRT-PCR. Our data exhibited that DLEU1 level was observably increased in CRC tissues and CRC cell lines and was closely associated with bad prognosis of CRC patients. CRC cell proliferation was repressed by sh-LncRNA DLEU1, whereas cell apoptosis was markedly stimulated. Moreover, knockdown of DLEU1 inhibited cell migration and invasion. Mechanistically, through interacting with miR-320b in CRC, DLEU1 promoted the level of PRPS1 which was a target of miR-320b. The rescue experiment confirmed that knockdown of DLEU1 repressed cell proliferation, migration and invasion while stimulated cell apoptosis via miR-320b/phosphoribosyl pyrophosphate synthetase 1 (PRPS1) axis. Meanwhile, the data of xenograft model exhibited that inhibition of DLEU1 suppressed tumor growth in vivo. In summary, DLEU1 knockdown may repress PRPS1 expression via miR-320b, and then repress cell proliferation, migration and invasion while stimulate cell apoptosis. Our research may provide a novel target for the treatment of CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...