Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(25): e2309657, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38654462

RESUMO

Alleviating the decomposition of the electrolyte is of great significance to improving the cycle stability of cathodes, especially for LiCoO2 (LCO), its volumetric energy density can be effectively promoted by increasing the charge cutoff voltage to 4.6 V, thereby supporting the large-scale application of clean energy. However, the rapid decomposition of the electrolyte under 4.6 V conditions not only loses the transport carrier for lithium ion, but also produces HF and insulators that destroy the interface of LCO and increase impedance. In this work, the decomposition of electrolyte is effectively suppressed by changing the adsorption force between LCO interface and EC. Density functional theory illustrates the LCO coated with lower electronegativity elements has a weaker adsorption force with the electrolyte, the adsorption energy between LCO@Mg and EC (0.49 eV) is weaker than that of LCO@Ti (0.73 eV). Meanwhile, based on the results of time of flight secondary ion mass spectrometry, conductivity-atomic force microscopy, in situ differential electrochemical mass spectrometry, soft X-ray absorption spectroscopy, and nuclear magnetic resonance, as the adsorption force increases, the electrolyte decomposes more seriously. This work provides a new perspective on the interaction between electrolyte and the interface of cathode and further improves the understanding of electrolyte decomposition.

2.
J Phys Chem Lett ; 14(27): 6270-6277, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37399074

RESUMO

Ion hydration in aqueous solutions plays a paramount role in many fields. Despite many studies on ion hydration, the nature of ion hydration is not consistently understood at the molecular level. Combining neutron scattering (NS), wide-angle X-ray scattering (WAXS), and molecular dynamics (MD), we quantify the ionic hydration degree (hydration ability) systematically for a series of alkali metal and halide ions based on static and dynamic hydration numbers. The former is based on the orientational correlation of water molecules bound to an ion derived from the positional information from NS and WAXS. The latter is defined as the mean number of water molecules remaining in the first coordination shell of an ion over a residence time of bound water molecules around the ion from MD. The static and dynamic hydration numbers distinguish hydration from coordination and quantify the ionic hydration degree, which provides a valuable reference for understanding various phenomena in nature.

3.
J Phys Chem B ; 127(21): 4858-4869, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204808

RESUMO

The underlying recognition mechanisms of alkali metal ions by crown ethers in aqueous solutions are yet to be fully understood at the molecular level. We report direct experimental and theoretical evidence for the structure and recognition sequence of alkali metal ions (Li+, Na+, K+, Rb+, and Cs+) by 18-crown-6 in aqueous solutions by wide-angle X-ray scattering combined with an empirical potential structure refinement modeling and ab initio molecular dynamics simulation. Li+, Na+, and K+ are located in the negative potential cavity of 18-crown-6, with Li+ and Na+ deviating from the centroid of 18-crown-6 by 0.95 and 0.35 Å, respectively. Rb+ and Cs+ lie outside the 18-crown-6 ring and deviate from the centroid of 18-crown-6 by 0.05 and 1.35 Å, respectively. The formation of the 18-crown-6/alkali metal ion complexes is dominated by electrostatic attraction between the cations and the oxygen atoms (Oc) of 18-crown-6. Li+, Na+, K+, and Rb+ form the H2O···18-crown-6/cation···H2O "sandwich" hydrates, while water molecules only hydrate with Cs+ of the 18-crown-6/Cs+ complex on the same side of Cs+. Based on the local structure, the recognition sequence of 18-crown-6 for alkali metal ions in an aqueous solution follows K+ > Rb+ >Na+ >Li+, which is completely different from that (Li+ > Na+ > K+ > Rb+ > Cs+) in the gas phase, confirming that the solvation medium seriously affects the cation recognition of crown ethers. This work provides atomic insights into understanding the host-guest recognition and solvation behavior of crown ether/cation complexes.

4.
Front Chem ; 11: 1103792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817175

RESUMO

The separation of brines with high Mg/Li mass ratios is a huge challenge. To provide a theoretical basis for the design of separation materials, the hydration of Li+ and Mg2+ in confinement using carbon nanotubes (CNTs) as the 1-D nanopore model was investigated using a multiscale theoretical approach. According to the analysis of the first coordination layer of cations, we determined that the coordination shells of two cations exist inside CNTs, while the second coordination shells of the cations are unstable. Moreover, the results of the structure analysis indicate that the hydration layer of Li+ is not complete in CNTs with diameters of 0.73, 0.87, and 1.00 nm. However, this does not occur in the 0.60 nm CNT, which is explained by the formation of contact ion pairs (CIP) between Li+ and Cl- that go through a unstable solvent-shared ion pair [Li(H2O)4]+, and this research was further extended by 400 ns in the 0.60 nm CNT to address the aforementioned results. However, the hydration layer of Mg2+ is complete and not sensitive to the diameter of CNTs using molecular dynamics simulation and an ab initio molecular dynamics (AIMD) method. Furthermore, the results of the orientation distribution of Li+ and Mg2+ indicate that the water molecules around Mg2+ are more ordered than water molecules around Li+ in the CNTs and are more analogous to the bulk solution. We conclude that it is energetically unfavorable to confine Li+ inside the 0.60-nm diameter CNT, while it is favorable for confining Li+ inside the other four CNTs and Mg2+ in all CNTs, which is driven by the strong electrostatic interaction between cations and Cl-. In addition, the interaction between cations and water molecules in the five CNTs was also analyzed from the non-covalent interaction (NCI) perspective by AIMD.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 1): 120478, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653851

RESUMO

An increasing amount of research has investigated whether direct contact ion pairs (CIP) exist in magnesium nitrate solutions. In this work, the relationship between the concentration and microstructure, as well as the details of the ion pair structure in magnesium nitrate solutions were studied by Raman spectroscopy, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations. Component analysis showed that solvent-shared ion pairs (SIPs) and free hydrated ions were the dominant species in dilute solution. SIPs gradually transformed into contact ion pairs as the concentration increased. Complex structures and CIPs were the main species when WSR < 10, and as the concentration further increased, the CIP content gradually decreased, while the number of complex structures gradually increased. MD simulations and DFT calculations provide a new understanding of the structural units of ion pairs in magnesium nitrate solutions. The SIPs and CIPs were mainly composed of cationic triple ion clusters with two magnesium ions and one nitrate ion. The nitrate ion mainly existed as monodentate ligand to form a CIP with the magnesium ion. As the solution concentration increased, triple ion clusters gradually transformed into more complex chain structures. The structural complexity of magnesium nitrate solutions deserves further attention.


Assuntos
Magnésio , Água , Simulação de Dinâmica Molecular , Soluções , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...