Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 15(1): 123-131, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229758

RESUMO

Inhibition of glucosylceramide synthase (GCS) has been proposed as a therapeutic strategy for the treatment of Parkinson's Disease (PD), particularly in patients where glycosphingolipid accumulation and lysosomal impairment are thought to be contributing to disease progression. Herein, we report the late-stage optimization of an orally bioavailable and CNS penetrant isoindolinone class of GCS inhibitors. Starting from advanced lead 1, we describe efforts to identify an improved compound with a lower human dose projection, minimal P-glycoprotein (P-gp) efflux, and acceptable pregnane X receptor (PXR) profile through fluorine substitution. Our strategy involved the use of predicted volume ligand efficiency to advance compounds with greater potential for low human doses down our screening funnel. We also applied minimized electrostatic potentials (Vmin) calculations for hydrogen bond acceptor sites to rationalize P-gp SAR. Together, our strategies enabled the alignment of a lower human dose with reduced P-gp efflux, and favorable PXR selectivity for the discovery of compound 12.

2.
ACS Med Chem Lett ; 14(2): 146-155, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36793422

RESUMO

Parkinson's disease is the second most prevalent progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations in GBA, the gene that encodes for the lysosomal enzyme glucosylcerebrosidase, are a major genetic risk factor for the development of Parkinson's disease potentially through the accumulation of glucosylceramide and glucosylsphingosine in the CNS. A therapeutic strategy to reduce glycosphingolipid accumulation in the CNS would entail inhibition of the enzyme responsible for their synthesis, glucosylceramide synthase (GCS). Herein, we report the optimization of a bicyclic pyrazole amide GCS inhibitor discovered through HTS to low dose, oral, CNS penetrant, bicyclic pyrazole urea GCSi's with in vivo activity in mouse models and ex vivo activity in iPSC neuronal models of synucleinopathy and lysosomal dysfunction. This was accomplished through the judicious use of parallel medicinal chemistry, direct-to-biology screening, physics-based rationalization of transporter profiles, pharmacophore modeling, and use a novel metric: volume ligand efficiency.

3.
Neurobiol Dis ; 159: 105507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509608

RESUMO

Mutations in the lysosomal enzyme glucocerebrosidase (GCase, GBA1 gene) are the most common genetic risk factor for developing Parkinson's disease (PD). GCase metabolizes the glycosphingolipids glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Mutations in GBA1 reduce enzyme activity and the resulting accumulation of glycosphingolipids may contribute to the underlying pathology of PD, possibly via altering lysosomal function. While reduction of GCase activity exacerbates α-synuclein (α-syn) aggregation, it has not been determined that this effect is the result of altered glycosphingolipid levels and lysosome function or some other effect of altering GCase. The glycosphingolipid GlcCer is synthesized by a single enzyme, glucosylceramide synthase (GCS), and small molecule inhibitors (GCSi) reduce cellular glycosphingolipid levels. In the present studies, we utilize a preformed fibril (PFF) rodent primary neuron in vitro model of α-syn pathology to investigate the relationship between glycosphingolipid levels, α-syn pathology, and lysosomal function. In primary cultures, pharmacological inhibition of GCase and D409V GBA1 mutation enhanced accumulation of glycosphingolipids and insoluble phosphorylated α-syn. Administration of a novel small molecule GCSi, benzoxazole 1 (BZ1), significantly decreased glycosphingolipid concentrations in rodent primary neurons and reduced α-syn pathology. BZ1 rescued lysosomal deficits associated with the D409V GBA1 mutation and α-syn PFF administration, and attenuated α-syn induced neurodegeneration of dopamine neurons. In vivo studies revealed BZ1 had pharmacological activity and reduced glycosphingolipids in the mouse brain to a similar extent observed in neuronal cultures. These data support the hypothesis that reduction of glycosphingolipids through GCS inhibition may impact progression of synucleinopathy and BZ1 is useful tool to further examine this important biology.


Assuntos
Benzoxazóis/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Glucosilceramidase/genética , Glucosiltransferases/antagonistas & inibidores , Glicoesfingolipídeos/metabolismo , Lisossomos/efeitos dos fármacos , Sinucleinopatias/metabolismo , alfa-Sinucleína/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/metabolismo , Técnicas In Vitro , Lisossomos/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Cultura Primária de Células , Agregados Proteicos , Ratos , Sinucleinopatias/genética , alfa-Sinucleína/metabolismo
4.
Neurobiol Aging ; 106: 12-25, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34225000

RESUMO

Synucleinopathies are neurodegenerative disorders involving pathological alpha-synuclein (αSyn) protein, including dementia with Lewy bodies, multiple system atrophy and Parkinson's disease (PD). Current in vivo models of synucleinopathy include transgenic mice overexpressing αSyn variants and methods based on administration of aggregated, exogenous αSyn. Combining these techniques offers the ability to study consequences of introducing pathological αSyn into primed neuronal environments likely to develop synucleinopathy. Herein, we characterize the impacts pre-formed fibrils (PFFs) of recombinant, human αSyn have in mice overexpressing human A30P αSyn, a mutation associated with autosomal dominant PD. A30P mouse brain contains detergent insoluble αSyn biochemically similar to PD brain, and these mice develop Lewy-like synucleinopathy with age. Administration of PFFs in A30P mice resulted in regionally-specific accumulations of phosphorylated synuclein, microglial induction and a motor phenotype that differed from PFF-induced effects in wildtype mice. Surprisingly, PFF-induced losses of tyrosine hydroxylase were similar in A30P and wildtype mice. Thus, the PFF-A30P model recapitulates key aspects of synucleinopathy with induction of microglia, creating an appropriate system for evaluating neurodegenerative therapeutics.


Assuntos
Microglia/patologia , Sinucleinopatias/etiologia , Sinucleinopatias/patologia , alfa-Sinucleína/efeitos adversos , Animais , Modelos Animais de Doenças , Expressão Gênica , Camundongos Transgênicos , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Sinucleinopatias/genética , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
Hum Mol Genet ; 28(19): 3244-3254, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31261387

RESUMO

Multiple genome-wide association studies (GWAS) in Parkinson disease (PD) have identified a signal at chromosome 4p16.3; however, the causal variant has not been established for this locus. Deep investigation of the region resulted in one identified variant, the rs34311866 missense SNP (p.M393T) in TMEM175, which is 20 orders of magnitude more significant than any other SNP in the region. Because TMEM175 is a lysosomal gene that has been shown to influence α-synuclein phosphorylation and autophagy, the p.M393T variant is an attractive candidate, and we have examined its effect on TMEM175 protein and PD-related biology. After knocking down each of the genes located under the GWAS peak via multiple shRNAs, only TMEM175 was found to consistently influence accumulation of phosphorylated α-synuclein (p-α-syn). Examination of the p.M393T variant showed effects on TMEM175 function that were intermediate between the wild-type (WT) and knockout phenotypes, with reduced regulation of lysosomal pH in response to starvation and minor changes in clearance of autophagy substrates, reduced lysosomal localization, and increased accumulation of p-α-syn. Finally, overexpression of WT TMEM175 protein reduced p-α-syn, while overexpression of the p.M393T variant resulted in no change in α-synuclein phosphorylation. These results suggest that the main signal in the chromosome 4p16.3 PD risk locus is driven by the TMEM175 p.M393T variant. Modulation of TMEM175 may impact α-synuclein biology and therefore may be a rational therapeutic strategy for PD.


Assuntos
Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Canais de Potássio/genética , alfa-Sinucleína/metabolismo , Linhagem Celular , Cromossomos Humanos Par 4/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Fosforilação , Canais de Potássio/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(9): 2389-2394, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193887

RESUMO

Parkinson disease (PD) is a neurodegenerative disorder pathologically characterized by nigrostriatal dopamine neuron loss and the postmortem presence of Lewy bodies, depositions of insoluble α-synuclein, and other proteins that likely contribute to cellular toxicity and death during the disease. Genetic and biochemical studies have implicated impaired lysosomal and mitochondrial function in the pathogenesis of PD. Transmembrane protein 175 (TMEM175), the lysosomal K+ channel, is centered under a major genome-wide association studies peak for PD, making it a potential candidate risk factor for the disease. To address the possibility that variation in TMEM175 could play a role in PD pathogenesis, TMEM175 function was investigated in a neuronal model system. Studies confirmed that TMEM175 deficiency results in unstable lysosomal pH, which led to decreased lysosomal catalytic activity, decreased glucocerebrosidase activity, impaired autophagosome clearance by the lysosome, and decreased mitochondrial respiration. Moreover, TMEM175 deficiency in rat primary neurons resulted in increased susceptibility to exogenous α-synuclein fibrils. Following α-synuclein fibril treatment, neurons deficient in TMEM175 were found to have increased phosphorylated and detergent-insoluble α-synuclein deposits. Taken together, data from these studies suggest that TMEM175 plays a direct and critical role in lysosomal and mitochondrial function and PD pathogenesis and highlight this ion channel as a potential therapeutic target for treating PD.


Assuntos
Autofagossomos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Canais de Potássio/genética , alfa-Sinucleína/química , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Modelos Biológicos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Canais de Potássio/deficiência , Cultura Primária de Células , Agregados Proteicos/efeitos dos fármacos , Ratos , alfa-Sinucleína/farmacologia
7.
Cell Metab ; 21(6): 855-67, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25980348

RESUMO

Cholesterol is required for the growth and viability of mammalian cells and is an obligate precursor for steroid hormone synthesis. Using a loss-of-function screen for mutants with defects in intracellular cholesterol trafficking, a Chinese hamster ovary cell mutant with haploinsufficiency of the U17 snoRNA was isolated. U17 is an H/ACA orphan snoRNA, for which a function other than ribosomal processing has not previously been identified. Through expression profiling, we identified hypoxia-upregulated mitochondrial movement regulator (HUMMR) mRNA as a target that is negatively regulated by U17 snoRNA. Upregulation of HUMMR in U17 snoRNA-deficient cells promoted the formation of ER-mitochondrial contacts, decreasing esterification of cholesterol and facilitating cholesterol trafficking to mitochondria. U17 snoRNA and HUMMR regulate mitochondrial synthesis of steroids in vivo and are developmentally regulated in steroidogenic tissues, suggesting that the U17 snoRNA-HUMMR pathway may serve a previously unrecognized, physiological role in gonadal tissue maturation.


Assuntos
Colesterol/metabolismo , Proteínas do Olho/biossíntese , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , RNA Nucleolar Pequeno/metabolismo , Regulação para Cima , Animais , Transporte Biológico Ativo/fisiologia , Células CHO , Colesterol/genética , Cricetinae , Cricetulus , Proteínas do Olho/genética , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Células NIH 3T3 , RNA Nucleolar Pequeno/genética
8.
J Biol Chem ; 288(50): 35703-13, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24174535

RESUMO

Mobilization of plasma membrane (PM) cholesterol to the endoplasmic reticulum is essential for cellular cholesterol homeostasis. The mechanisms regulating this retrograde, intermembrane cholesterol transfer are not well understood. Because mutant cells with defects in PM to endoplasmic reticulum cholesterol trafficking can be isolated on the basis of resistance to amphotericin B, we conducted an amphotericin B loss-of-function screen in Chinese hamster ovary (CHO) cells using insertional mutagenesis to identify genes that regulate this trafficking mechanism. Mutant line A1 displayed reduced cholesteryl ester formation from PM-derived cholesterol and increased de novo cholesterol synthesis, indicating a deficiency in retrograde cholesterol transport. Genotypic analysis revealed that the A1 cell line contained one disrupted allele of the U60 small nucleolar RNA (snoRNA) host gene, resulting in haploinsufficiency of the box C/D snoRNA U60. Complementation and mutational studies revealed the U60 snoRNA to be the essential feature from this locus that affects cholesterol trafficking. Lack of alteration in predicted U60-mediated site-directed methylation of 28 S rRNA in the A1 mutant suggests that the U60 snoRNA modulates cholesterol trafficking by a mechanism that is independent of this canonical function. Our study adds to a growing body of evidence for participation of small noncoding RNAs in cholesterol homeostasis and is the first to implicate a snoRNA in this cellular function.


Assuntos
Colesterol/metabolismo , Espaço Intracelular/metabolismo , RNA Nucleolar Pequeno/genética , Anfotericina B/farmacologia , Animais , Sequência de Bases , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Células CHO , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Loci Gênicos/genética , Haploinsuficiência/efeitos dos fármacos , Haploinsuficiência/genética , Humanos , Espaço Intracelular/efeitos dos fármacos , Camundongos , Dados de Sequência Molecular , Mutação , Fosfatidilcolinas/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ratos , Ribonucleoproteínas Nucleolares Pequenas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...