Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(40): 35783-35791, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36249363

RESUMO

Caffeine, quinic acid, and nicotinic acid are among the significant chemical determinants of coffee quality. This study develops a chemometric model to quantify these compounds in ternary mixtures analyzed by terahertz time-domain spectroscopy (THz-TDS). A data set of 480 THz spectra was obtained from 80 samples. Combinations of data preprocessing methods, including normalization (Z-score, min-max scaling, Mie baseline removal) and dimensionality reduction (principal component analysis (PCA), factor analysis (FA), independent component analysis (ICA), locally linear embedding (LLE), non-negative matrix factorization (NMF), isomap), and prediction models (partial least-squares regression (PLSR), support vector regression (SVR), multilayer perceptron (MLP), convolutional neural network (CNN), gradient boosting) were analyzed for their prediction performance (totaling to 4,711,685 combinations). Results show that the highest quantification performance was achieved at a root-mean-square error of prediction (RMSEP) of 0.0254 (dimensionless mass ratio), using min-max scaling and factor analysis for data preprocessing and multilayer perceptron for prediction. Effects of preprocessing, comparison of prediction models, and linearity of data are discussed.

2.
Molecules ; 27(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956992

RESUMO

Lactose plays a significant role in daily lives as a constituent of various food and pharmaceutical products. Yet, lactose intolerance conditions demand low-lactose and lactose-free products in the market. These increasing nutritional claims and labels on food products entail simple and reliable methods of analysis that can be used for meeting quality standards, nutritional claims and legal requirements. In this study, terahertz time-domain spectroscopy (THz-TDS) was employed to analyse α-lactose monohydrate qualitatively and quantitatively in food products. Both absorption spectra and absorption coefficient spectra were investigated for their prediction performance. Regression models for lactose quantification using peak area and height of the absorption peaks 0.53 and 1.37 THz were developed and assessed in infant formula samples. Satisfactory prediction results were achieved in ideal conditions with pure standards, but not in all predictions of infant formula samples. Reasons and further implications are discussed.


Assuntos
Lactose , Espectroscopia Terahertz , Humanos , Fórmulas Infantis , Lactose/química , Espectroscopia Terahertz/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-29994304

RESUMO

Three-dimensional (3-D) ultrasound imaging is a promising modality for many medical applications. Unfortunately, it generates voluminous data in the front end, making it unattractive for high-volume-rate portable medical applications. We apply synthetic aperture sequential beamforming (SASB) to greatly compress the front-end receive data. Baseline 3-D SASB has a low volume rate, because subapertures fire one by one. In this paper, we propose to increase the volume rate of 3-D SASB without degrading imaging quality through: 1) transmitting and receiving simultaneously with four subapertures and 2) using linear chirps as the excitation waveform to reduce interference. We design four linear chirps that operate on two overlapped frequency bands with chirp pairs in each band having opposite chirp rates. Direct implementation of this firing scheme results in grating lobes. Therefore, we design a sparse array that mitigates the grating lobe levels through optimizing the locations of transducer elements in the bin-based random array. Compared with the baseline 3-D SASB, the proposed method increases the volume rate from 8.56 to 34.2 volumes/s without increasing the front-end computation requirement. Field-II-based cyst simulations show that the proposed method achieves imaging quality comparable with baseline 3-D SASB in both shallow and deep regions.


Assuntos
Imageamento Tridimensional/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Algoritmos , Simulação por Computador , Humanos , Rim/diagnóstico por imagem , Ultrassonografia Pré-Natal
4.
Ultrasonics ; 88: 174-184, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29674228

RESUMO

We have investigated limited angle transmission tomography to estimate speed of sound (SOS) distributions for breast cancer detection. That requires both accurate delineations of major tissues, in this case by segmentation of prior B-mode images, and calibration of the relative positions of the opposed transducers. Experimental sensitivity evaluation of the reconstructions with respect to segmentation and calibration errors is difficult with our current system. Therefore, parametric studies of SOS errors in our bent-ray reconstructions were simulated. They included mis-segmentation of an object of interest or a nearby object, and miscalibration of relative transducer positions in 3D. Close correspondence of reconstruction accuracy was verified in the simplest case, a cylindrical object in homogeneous background with induced segmentation and calibration inaccuracies. Simulated mis-segmentation in object size and lateral location produced maximum SOS errors of 6.3% within 10 mm diameter change and 9.1% within 5 mm shift, respectively. Modest errors in assumed transducer separation produced the maximum SOS error from miscalibrations (57.3% within 5 mm shift), still, correction of this type of error can easily be achieved in the clinic. This study should aid in designing adequate transducer mounts and calibration procedures, and in specification of B-mode image quality and segmentation algorithms for limited angle transmission tomography relying on ray tracing algorithms.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Imagem Multimodal , Tomografia por Raios X/métodos , Ultrassonografia Mamária/métodos , Algoritmos , Calibragem , Simulação por Computador , Desenho de Equipamento , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Sensibilidade e Especificidade , Transdutores
5.
J Med Imaging (Bellingham) ; 4(4): 045001, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29057289

RESUMO

In B-mode imaging of the dependent or compressed breast, wave incidence at steep angles can change propagation directions and induce areas of signal dropout. To evaluate the image anomalies in reasonable simulation times, we performed full-wave studies for center frequencies of 1 and 4 MHz. Speed of sound and density of skin, typical coupling gel, and adipose tissue were assigned to the test couplant. Compared with commercial gel, skin-like couplant reduced the dropout area at 1 and 4 MHz by 57.1% and 96.7%, respectively, consistent with a decreased average beam deflection in the breast. Conversely, the adipose-like couplant increased the dropout area from that of simulated commercial gel by 26.5% and 36.7% at 1 and 4 MHz, respectively. In addition, the skin-like couplant resulted in the greatest beam deflection inside the breast among all couplants. The findings could aid the use of three-dimensional simulations to design ultrasound couplants for beam passage through tissue boundaries at steep angles to improve corrections of signal dropout and defocusing and in compound imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...