Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 378(6618): 399-405, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36302014

RESUMO

General conditions for organic reactions are important but rare, and efforts to identify them usually consider only narrow regions of chemical space. Discovering more general reaction conditions requires considering vast regions of chemical space derived from a large matrix of substrates crossed with a high-dimensional matrix of reaction conditions, rendering exhaustive experimentation impractical. Here, we report a simple closed-loop workflow that leverages data-guided matrix down-selection, uncertainty-minimizing machine learning, and robotic experimentation to discover general reaction conditions. Application to the challenging and consequential problem of heteroaryl Suzuki-Miyaura cross-coupling identified conditions that double the average yield relative to a widely used benchmark that was previously developed using traditional approaches. This study provides a practical road map for solving multidimensional chemical optimization problems with large search spaces.

2.
Nat Commun ; 13(1): 2102, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440635

RESUMO

The development of next-generation organic electronic materials critically relies on understanding structure-function relationships in conjugated polymers. However, unlocking the full potential of organic materials requires access to their vast chemical space while efficiently managing the large synthetic workload to survey new materials. In this work, we use automated synthesis to prepare a library of conjugated oligomers with systematically varied side chain composition followed by single-molecule characterization of charge transport. Our results show that molecular junctions with long alkyl side chains exhibit a concentration-dependent bimodal conductance with an unexpectedly high conductance state that arises due to surface adsorption and backbone planarization, which is supported by a series of control experiments using asymmetric, planarized, and sterically hindered molecules. Density functional theory simulations and experiments using different anchors and alkoxy side chains highlight the role of side chain chemistry on charge transport. Overall, this work opens new avenues for using automated synthesis for the development and understanding of organic electronic materials.


Assuntos
Polímeros , Adsorção , Polímeros/química
3.
Langmuir ; 37(49): 14323-14335, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34856104

RESUMO

Liquid-liquid phase-separated coacervate droplets give rise to membraneless compartments that play an important role in the spatial organization and reactivity in cells. Due to their molecularly crowded nature and ability to sequester biomolecules, coacervate droplets create distinct environments for enzymatic reaction kinetics and reaction mechanisms that markedly differ from bulk solution. In this work, we use a combination of experiments and quantitative modeling to understand how coacervate droplets promote reversible small molecule reaction chemistry. In particular, we study a model condensation reaction generating an unstable fluorescent imine in polyacrylic acid-polyethylene glycol coacervate droplets over a range of conditions. At equilibrium, the concentration of the imine product in coacervate droplets is approximately 140-fold larger than that in bulk solution, which arises due to preferential partitioning of reactants and products into coacervate droplets and a reaction equilibrium constant that is roughly threefold larger in coacervate droplets than in solution. A reaction-diffusion model is developed to quantitatively describe how competing reaction and partitioning equilibria govern the spatial distribution of the imine product inside coacervate droplets. Overall, our results show that compartmentalization stabilizes kinetically labile reaction products, which enables larger reactant concentrations in coacervate droplets compared to bulk solution. Broadly, these results provide an improved understanding of how biomolecular condensates promote multistep reaction pathways involving unstable reaction intermediates and suggest how coacervates provide a potential abiotic mechanism to promote molecular complexity.


Assuntos
Condensados Biomoleculares , Polietilenoglicóis
4.
Nano Lett ; 21(19): 8340-8347, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34529446

RESUMO

Efficient long-range charge transport is required for high-performance molecular electronic devices. Resonant transport is thought to occur in single molecule junctions when molecular frontier orbital energy levels align with electrode Fermi levels, thereby enabling efficient transport without molecular or environmental relaxation. Despite recent progress, we lack a systematic understanding of the transition between nonresonant and resonant transport for molecular junctions with different chemical compositions. In this work, we show that molecular junctions undergo a reversible transition from nonresonant tunneling to resonant transport as a function of applied bias. Transient bias-switching experiments show that the nonresonant to resonant transition is reversible with the applied bias. We determine a general quantitative relationship that describes the transition voltage as a function of the molecular frontier orbital energies and electrode Fermi levels. Overall, this work highlights the importance of frontier orbital energy alignment in achieving efficient charge transport in molecular devices.


Assuntos
Eletrônica , Nanotecnologia , Eletrodos
5.
ACS Appl Mater Interfaces ; 12(18): 20722-20732, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32286786

RESUMO

Biohybrid molecules are a versatile class of materials for controlling the assembly behavior and functional properties of electronically active organics. In this work, we study the effect of the size of the π-conjugated core on the assembly and phase behavior for a series of π-conjugated peptides consisting of oligothiophene cores of defined lengths flanked by sequence-defined peptides (OTX, where X = 4, 5, 6 is the number of thiophene core units). Interestingly, we find that π-conjugated peptides with relatively short OT4 cores assemble into ordered, high aspect ratio, one-dimensional (1D) structures, whereas π-conjugated peptides with longer OT5 and OT6 cores assemble into disordered structures or lower aspect ratio 1D structures depending on assembly conditions. Phase diagrams for assembled materials are experimentally determined as a function of ionic strength, pH, temperature, and peptide concentration, revealing the impact of molecular sequence and π-conjugated core length on assembled morphologies. Molecular dynamics (MD) simulations are further used to probe the origins of microscale differences in assembly that arise from subtle changes in molecular identity. Broadly, our work elucidates the mechanisms governing the assembly of π-conjugated peptides, which will aid in efficient materials processing for soft electronic applications. Overall, these results highlight the complex phase behavior of biohybrid materials, including the impact of molecular sequence on assembly behavior and morphology.


Assuntos
Oligopeptídeos/química , Transição de Fase , Tiofenos/química , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Concentração Osmolar , Conformação Proteica , Multimerização Proteica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...