Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 13: 994676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237616

RESUMO

In amyotrophic lateral sclerosis (ALS), neurodegeneration is characterized by distal axonopathy that begins at the distal axons, including the neuromuscular junctions, and progresses proximally in a "dying back" manner prior to the degeneration of cell bodies. However, the molecular mechanism for distal axonopathy in ALS has not been fully addressed. Semaphorin 3A (Sema3A), a repulsive axon guidance molecule that phosphorylates collapsin response mediator proteins (CRMPs), is known to be highly expressed in Schwann cells near distal axons in a mouse model of ALS. To clarify the involvement of Sema3A-CRMP signaling in the axonal pathogenesis of ALS, we investigated the expression of phosphorylated CRMP1 (pCRMP1) in the spinal cords of 35 patients with sporadic ALS and seven disease controls. In ALS patients, we found that pCRMP1 accumulated in the proximal axons and co-localized with phosphorylated neurofilaments (pNFs), which are a major protein constituent of spheroids. Interestingly, the pCRMP1:pNF ratio of the fluorescence signal in spheroid immunostaining was inversely correlated with disease duration in 18 evaluable ALS patients, indicating that the accumulation of pCRMP1 may precede that of pNFs in spheroids or promote ALS progression. In addition, overexpression of a phospho-mimicking CRMP1 mutant inhibited axonal outgrowth in Neuro2A cells. Taken together, these results indicate that pCRMP1 may be involved in the pathogenesis of axonopathy in ALS, leading to spheroid formation through the proximal progression of axonopathy.

2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330827

RESUMO

There are no validated biomarkers for schizophrenia (SCZ), a disorder linked to neural network dysfunction. We demonstrate that collapsin response mediator protein-2 (CRMP2), a master regulator of cytoskeleton and, hence, neural circuitry, may form the basis for a biomarker because its activity is uniquely imbalanced in SCZ patients. CRMP2's activity depends upon its phosphorylation state. While an equilibrium between inactive (phosphorylated) and active (nonphosphorylated) CRMP2 is present in unaffected individuals, we show that SCZ patients are characterized by excess active CRMP2. We examined CRMP2 levels first in postmortem brains (correlated with neuronal morphometrics) and then, because CRMP2 is expressed in lymphocytes as well, in the peripheral blood of SCZ patients versus age-matched unaffected controls. In the brains and, more starkly, in the lymphocytes of SCZ patients <40 y old, we observed that nonphosphorylated CRMP2 was higher than in controls, while phosphorylated CRMP2 remained unchanged from control. In the brain, these changes were associated with dendritic structural abnormalities. The abundance of active CRMP2 with insufficient opposing inactive p-CRMP2 yielded a unique lowering of the p-CRMP2:CRMP2 ratio in SCZ patients, implying a disruption in the normal equilibrium between active and inactive CRMP2. These clinical data suggest that measuring CRMP2 and p-CRMP2 in peripheral blood might reflect intracerebral processes and suggest a rapid, minimally invasive, sensitive, and specific adjunctive diagnostic aid for early SCZ: increased CRMP2 or a decreased p-CRMP2:CRMP2 ratio may help cinch the diagnosis in a newly presenting young patient suspected of SCZ (versus such mimics as mania in bipolar disorder, where the ratio is high).


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Esquizofrenia/diagnóstico , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética
3.
Eur J Neurosci ; 53(10): 3279-3293, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33772906

RESUMO

The semaphorin family is a well-characterized family of secreted or membrane-bound proteins that are involved in activity-independent neurodevelopmental processes, such as axon guidance, cell migration, and immune functions. Although semaphorins have recently been demonstrated to regulate activity-dependent synaptic scaling, their roles in Hebbian synaptic plasticity as well as learning and memory remain poorly understood. Here, using a rodent model, we found that an inhibitory avoidance task, a hippocampus-dependent contextual learning paradigm, increased secretion of semaphorin 3A in the hippocampus. Furthermore, the secreted semaphorin 3A in the hippocampus mediated contextual memory formation likely by driving AMPA receptors into hippocampal synapses via the neuropilin1-plexin A4-semaphorin receptor complex. This signaling process involves alteration of the phosphorylation status of collapsin response mediator protein 2, which has been characterized as a downstream molecule in semaphorin signaling. These findings implicate semaphorin family as a regulator of Hebbian synaptic plasticity and learning.


Assuntos
Semaforina-3A , Semaforinas , Aprendizagem , Plasticidade Neuronal , Sinapses
4.
J Neurochem ; 157(4): 1207-1221, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33449368

RESUMO

Collapsin response mediator proteins (CRMPs) have been identified as mediating proteins of repulsive axon guidance cue Semaphorin-3A (Sema3A). Phosphorylation of CRMPs plays a crucial role in the Sema3A signaling cascade. It has been shown that Fyn phosphorylates CRMP1 at Tyrosine 504 residue (Tyr504); however, the physiological role of this phosphorylation has not been examined. We found that CRMP1 was the most strongly phosphorylated by Fyn among the five members of CRMPs. We confirmed Tyr504 phosphorylation of CRMP1 by Fyn. Immunocytochemistry of mouse dorsal root ganglion (DRG) neurons showed that phosphotyrosine signal in the growth cones was transiently increased in the growth cones upon Sema3A stimulation. Tyr504-phosphorylated CRMP1 also tended to increase after Sema3A simulation. Ectopic expression of a single amino acid mutant of CRMP1 replacing Tyr504 with phenylalanine (CRMP1-Tyr504Phe) suppressed Sema3A-induced growth cone collapse response in chick DRG neurons. CRMP1-Tyr504Phe expression in mouse hippocampal neurons also suppressed Sema3A but not Sema3F-induced growth cone collapse response. Immunohistochemistry showed that Tyr504-phosphorylated CRMP1 was present in the cell bodies and in the dendritic processes of mouse cortical neurons. CRMP1-Tyr504Phe suppressed Sema3A-induced dendritic growth of primary cultured mouse cortical neurons as well as the dendritic development of cortical pyramidal neurons in vivo. Fyn± ; Crmp1± double heterozygous mutant mice exhibited poor development of cortical layer V basal dendrites, which was the similar phenotype observed in Sema3a-/- , Fyn-/- , and Crmp1-/- mice. These findings demonstrate that Tyr504 phosphorylation of CRMP1 by Fyn is an essential step of Sema3A-regulated dendritic development of cortical pyramidal neurons. (247 words).


Assuntos
Dendritos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Fosfoproteínas/metabolismo , Semaforina-3A/metabolismo , Animais , Córtex Cerebral/metabolismo , Embrião de Galinha , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Tirosina/metabolismo
5.
Science ; 360(6384): 50-57, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29622647

RESUMO

Brain damage such as stroke is a devastating neurological condition that may severely compromise patient quality of life. No effective medication-mediated intervention to accelerate rehabilitation has been established. We found that a small compound, edonerpic maleate, facilitated experience-driven synaptic glutamate AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic-acid) receptor delivery and resulted in the acceleration of motor function recovery after motor cortex cryoinjury in mice in a training-dependent manner through cortical reorganization. Edonerpic bound to collapsin-response-mediator-protein 2 (CRMP2) and failed to augment recovery in CRMP2-deficient mice. Edonerpic maleate enhanced motor function recovery from internal capsule hemorrhage in nonhuman primates. Thus, edonerpic maleate, a neural plasticity enhancer, could be a clinically potent small compound with which to accelerate rehabilitation after brain damage.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Maleatos/metabolismo , Maleatos/farmacologia , Córtex Motor/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neuroproteção , Recuperação de Função Fisiológica/efeitos dos fármacos , Tiofenos/metabolismo , Tiofenos/farmacologia , Animais , Masculino , Maleatos/uso terapêutico , Camundongos , Camundongos Knockout , Camundongos Mutantes , Córtex Motor/lesões , Córtex Motor/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Qualidade de Vida , Receptores de AMPA/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Tiofenos/uso terapêutico
6.
Genes Cells ; 21(10): 1059-1079, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27582038

RESUMO

Collapsin response mediator protein 2 (CRMP2) plays a key role in axon guidance, dendritic morphogenesis and cell polarization. CRMP2 is implicated in various neurological and psychiatric disorders. However, in vivo functions of CRMP2 remain unknown. We generated CRMP2 gene-deficient (crmp2-/- ) mice and examined their behavioral phenotypes. During 24-h home cage monitoring, the activity level during the dark phase of crmp2-/- mice was significantly higher than that of wild-type (WT) mice. Moreover, the time during the open arm of an elevated plus maze was longer for crmp2-/- mice than for WT mice. The duration of social interaction was shorter for crmp2-/- mice than for WT mice. Crmp2-/- mice also showed mild impaired contextual learning. We then examined the methamphetamine-induced behavioral change of crmp2-/- mice. Crmp2-/- mice showed increased methamphetamine-induced ambulatory activity and serotonin release. Crmp2-/- mice also showed altered expression of proteins involved in GABAergic synapse, glutamatergic synapse and neurotrophin signaling pathways. In addition, SNAP25, RAB18, FABP5, ARF5 and LDHA, which are related genes to schizophrenia and methamphetamine sensitization, are also decreased in crmp2-/- mice. Our study implies that dysregulation of CRMP2 may be involved in pathophysiology of neuropsychiatric disorders.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Transtornos Mentais/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Doenças do Sistema Nervoso/metabolismo , Animais , Comportamento Animal , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Deficiências da Aprendizagem/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/metabolismo , Proteoma
7.
Genes Cells ; 21(9): 994-1005, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27480924

RESUMO

Collapsin response mediator protein 2, CRMP2, has been identified as an intracellular signaling mediator for Semaphorin 3A (Sema3A). CRMP2 plays a key role in axon guidance, dendritic morphogenesis, and cell polarization. It has been also implicated in a variety of neurological and psychiatric disorders. However, the in vivo functions of CRMP2 remain unknown. We generated CRMP2 gene-deficient (crmp2(-/-) ) mice. The crmp2(-/-) mice showed irregular development of dendritic spines in cortical neurons. The density of dendritic spines was reduced in the cortical layer V pyramidal neurons of crmp2(-/-) mice as well as in those of sema3A(-/-) and crmp1(-/-) mice. However, no abnormality was found in dendritic patterning in crmp2(-/-) compared to wild-type (WT) neurons. The level of CRMP1 was increased in crmp2(-/-) , but the level of CRMP2 was not altered in crmp1(-/-) compared to WT cortical brain lysates. Dendritic spine density and branching were reduced in double-heterozygous sema3A(+/-) ;crmp2(+/-) and sema3A(+/-) ;crmp1(+/-) mice. The phenotypic defects had no genetic interaction between crmp1 and crmp2. These findings suggest that both CRMP1 and CRMP2 mediate Sema3A signaling to regulate dendritic spine maturation and patterning, but through overlapping and distinct signaling pathways.


Assuntos
Dendritos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Contagem de Células , Células Cultivadas , Córtex Cerebral/citologia , Dendritos/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Semaforina-3A/genética , Semaforina-3A/metabolismo , Transdução de Sinais/fisiologia
8.
Brain Res ; 1631: 127-36, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26638837

RESUMO

Growing axons rely on local signaling at the growth cone for guidance cues. Semaphorin3A (Sema3A), a secreted repulsive axon guidance molecule, regulates synapse maturation and dendritic branching. We previously showed that local Sema3A signaling in the growth cones elicits retrograde retrograde signaling via PlexinA4 (PlexA4), one component of the Sema3A receptor, thereby regulating dendritic localization of AMPA receptor GluA2 and proper dendritic development. In present study, we found that nimodipine (voltage-gated L-type Ca(2+) channel blocker) and tetrodotoxin (TTX; voltage-gated Na(+) channel blocker) suppress Sema3A-induced dendritic localization of GluA2 and dendritic branch formation in cultured hippocampal neurons. The local application of nimodipine or TTX to distal axons suppresses retrograde transport of Venus-Sema3A that has been exogenously applied to the distal axons. Sema3A facilitates axonal transport of PlexA4, which is also suppressed in neurons treated with either TTX or nimodipine. These data suggest that voltage-gated calcium and sodium channels mediate Sema3A retrograde signaling that regulates dendritic GluA2 localization and branch formation.


Assuntos
Canais de Cálcio/metabolismo , Dendritos/fisiologia , Cones de Crescimento/metabolismo , Semaforina-3A/metabolismo , Animais , Transporte Axonal/fisiologia , Cálcio/metabolismo , Células Cultivadas , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Nimodipina/farmacologia , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia
9.
Int Immunol ; 27(9): 459-66, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25855660

RESUMO

Semaphorin 3A (Sema3A), originally identified as a potent growth cone collapsing factor in developing sensory neurons, is now recognized as a key player in immune, cardiovascular, bone metabolism and neurological systems. Here we established an anti-Sema3A monoclonal antibody that neutralizes the effects of Sema3A both in vitro and in vivo. The anti-Sema3A neutralization chick IgM antibodies were screened by combining an autonomously diversifying library selection system and an in vitro growth cone collapse assay. We further developed function-blocking chick-mouse chimeric and humanized anti-Sema3A antibodies. We found that our anti-Sema3A antibodies were effective for improving the survival rate in lipopolysaccharide-induced sepsis in mice. Our antibody is a potential therapeutic agent that may prevent the onset of or alleviate symptoms of human diseases associated with Sema3A.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Lipopolissacarídeos/imunologia , Semaforina-3A/imunologia , Sepse/imunologia , Animais , Células COS , Linhagem Celular , Galinhas , Chlorocebus aethiops , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...