Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 98(18): 180401, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17501545

RESUMO

The recombination of two split Bose-Einstein condensates on an atom chip is shown to result in heating which depends on the relative phase of the two condensates. This heating reduces the number of condensate atoms between 10% and 40% and provides a robust way to read out the phase of an atom interferometer without the need for ballistic expansion. The heating may be caused by the dissipation of dark solitons created during the merging of the condensates.

2.
Phys Rev Lett ; 98(3): 030407, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17358668

RESUMO

We measure the relative phase of two Bose-Einstein condensates confined in a radio frequency induced double-well potential on an atom chip. We observe phase coherence between the separated condensates for times up to approximately 200 ms after splitting, a factor of 10 longer than the phase diffusion time expected for a coherent state for our experimental conditions. The enhanced coherence time is attributed to number squeezing of the initial state by a factor of 10. In addition, we demonstrate a rotationally sensitive (Sagnac) geometry for a guided atom interferometer by propagating the split condensates.

3.
Phys Rev Lett ; 99(24): 240406, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18233429

RESUMO

Elongated Bose-Einstein condensates (BECs) exhibit strong spatial phase fluctuations even well below the BEC transition temperature. We demonstrate that atom interferometers using such condensates are robust against phase fluctuations; i.e., the relative phase of the split condensate is reproducible despite axial phase fluctuations. However, larger phase fluctuations limit the coherence time, especially in the presence of some asymmetries in the two wells of the interferometer.

4.
Phys Rev Lett ; 97(9): 093201, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17026359

RESUMO

We study how interactions affect the quantum reflection of Bose-Einstein condensates. A patterned silicon surface with a square array of pillars resulted in high reflection probabilities. For incident velocities greater than 2.5 mm/s, our observations agreed with single-particle theory. At velocities below 2.5 mm/s, the measured reflection probability saturated near 60% rather than increasing towards unity as predicted by the accepted theoretical model. We extend the theory of quantum reflection to account for the mean-field interactions of a condensate which suppresses quantum reflection at low velocity. The reflected condensates show collective excitations as recently predicted.

5.
Phys Rev Lett ; 95(17): 170402, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16383799

RESUMO

Two spatially separate Bose-Einstein condensates were prepared in an optical double-well potential. A bidirectional coupling between the two condensates was established by two pairs of Bragg beams which continuously outcoupled atoms in opposite directions. The atomic currents induced by the optical coupling depend on the relative phase of the two condensates and on an additional controllable coupling phase. This was observed through symmetric and antisymmetric correlations between the two outcoupled atom fluxes. A Josephson optical coupling of two condensates in a ring geometry is proposed. The continuous outcoupling method was used to monitor slow relative motions of two elongated condensates and characterize the trapping potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...