Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005120

RESUMO

We studied the influence of the ethylenediaminetetraacetic acid (EDTA) content used as combustion fuel when fabricating nickel oxide (NiO) nanocatalysts via solution combustion synthesis, as well as the growth behavior of carbon nanotubes (CNTs) using this catalyst. Nickel nitrate hexahydrate (Ni(NO3)2∙6H2O) was used as the metal precursor (an oxidizer), and the catalysts were synthesized by adjusting the molar ratio of fuel (EDTA) to oxidizer in the range of 1:0.25 to 2.0. The results of the crystal structure analysis showed that as the EDTA content increased beyond the chemical stoichiometric balance with Ni(NO3)2∙6H2O (F/O = 0.25), the proportion of Ni metal within the catalyst particles decreased, and only single-phase NiO was observed. Among the synthesized catalysts, the smallest crystallite size was observed with a 1:1 ratio of Ni ions to EDTA. However, an increase in the amount of EDTA resulted in excessive fuel supply, leading to an increase in crystallite size. Microstructure analysis revealed porous NiO agglomerates due to the use of EDTA, and differences in particle growth based on the fuel ratio were observed. We analyzed the growth behavior of CNTs grown using NiO nanocatalysts through catalytic chemical vapor deposition (CCVD). As the F/O ratio increased, it was observed that the catalyst particles grew excessively beyond hundreds of nanometers, preventing further CNT growth and leading to a rapid termination of CNT growth. Raman spectroscopy was used to analyze the structural characteristics of CNTs, and it was found that the ID/IG ratio indicated the highest CNT crystallinity near an F/O ratio of 1:1.

2.
Materials (Basel) ; 16(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38005169

RESUMO

MnO2 and CeO2 were doped to improve the corrosion resistance of CSZ (calcia-stabilized zirconia), and we studied the phase formation, mechanical properties, and corrosion resistance by molten mold flux. The volume fraction of the monoclinic phase gradually decreased as the amount of MnO2 doping increased. The splitting phenomenon of the t(101) peak was observed in 2Mn_CSZ, and in 4Mn_CSZ, it was completely split, forming a cubic phase. The relative density increased and the monoclinic phase decreased as the doping amount increased, leading to an increase in Vickers hardness and flexural strength. However, in 3Mn_CSZ and 4Mn_CSZ, where cubic phase formation occurred, the tetragonal phase decreased, leading to a reduction in these properties. MnO2-doped CSZ exhibited a larger fraction of the monoclinic phase compared to the original CSZ after the corrosion test, indicating worsened corrosion resistance. These results are attributed to the predominant presence of Mn3+ and Mn2+ forms, rather than the Mn4+ form, which has a smaller basicity difference with SiO2, and due to the low melting point. The monoclinic phase fraction decreased as the doping amount of CeO2 increased in CeO2-doped CSZ, but the rate of decrease was lower compared to MnO2-doped CSZ. The monoclinic phase decreased as the doping amount increased, but the Vickers hardness and flexural strength showed a decreasing trend due to the low relative density. The destabilization behavior of Ca in SEM-EDS images before and after corrosion was difficult to identify due to the presence of Ca in the slag, and the destabilization behavior of Ce due to slag after corrosion was not observed. In the XRD data of the specimen surface after the corrosion test, the fraction of the monoclinic phase increased compared to before the test but showed a lower monoclinic phase fraction compared to CSZ. It is believed that CeO2 has superior corrosion resistance compared to CaO because Ce predominantly exists in the form of Ce4+, which has a smaller difference in basicity within the zirconia lattice.

3.
Materials (Basel) ; 15(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36499820

RESUMO

Among various processes for manufacturing complex-shaped metal parts, additive manufacturing is highlighted as a process capable of reducing the wastage of materials without requiring a post-process, such as machining and finishing. In particular, it is a suitable new manufacturing technology for producing AISI H13 tool steel for hot-worked molds with complex cooling channels. In this study, we manufactured AISI H13 tool steel using the laser power bed fusion (LPBF) process and investigated the effects of tempering temperature and holding time on its microstructure and mechanical properties. The mechanical properties of the sub-grain cell microstructure of the AISI H13 tool steel manufactured using the LPBF process were superior to that of the H13 tool steel manufactured using the conventional method. These sub-grain cells decomposed and disappeared during the austenitizing process; however, the mechanical properties could be restored at a tempering temperature of 500 °C or higher owing to the secondary hardening and distribution of carbides. Furthermore, the mechanical properties deteriorated because of the decomposition of the martensite phase and the accumulation and coarsening of carbides when over-tempering occurred at 500 °C for 5 h and 550 °C for 3 h.

4.
Micromachines (Basel) ; 13(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36422407

RESUMO

Laser powder bed fusion (LPBF) is a promising additive-manufacturing process for metallic materials. It has the advantage of flexibility in product design, such that various mechanical parts can be fabricated. However, because metal parts are built-up in a layer-by-layer manner, the material fabricated by LPBF has an anisotropic microstructure, which is important for the design of materials. In this study, the corrosion resistance of 18Ni300 maraging steel (MS) fabricated by LPBF was explored considering the building direction. Furthermore, the effects of heat treatment and aging on the microstructure and corrosion resistance were investigated. Sub-grain cells formed by rapid cooling in LPBF improve the corrosion resistance of MS. As a result, the as-built MS has the highest corrosion resistance. However, the sub-grain cells are eliminated by heat treatment or aging, which causes the deterioration of corrosion resistance. In the case of 18Ni300 MS, the cylindrical sub-grain cells are formed and aligned along the heat dissipation direction, which is similar to the building direction; thus, a significant anisotropy in corrosion resistance is found in the as-built MS. However, such anisotropy in corrosion resistance is diminished by heat treatment and aging, which eliminates the sub-grain cells.

5.
Materials (Basel) ; 15(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36143647

RESUMO

Alloy parts produced by an additive manufacturing method with rapid heat transfer from fast melting and solidification have different microstructures, characteristics, and performances compared with materials made by the conventional process. In this study, the corrosion and oxidation resistance of SS316L, which was prepared by the powder bed fusion process, was compared with those of cold-rolled SS316L. Additionally, the surface oxide film on stainless steel was thoroughly assessed since the film has the greatest influence on the corrosion and oxidation resistance. The effect of heat treatment on corrosion and oxidation resistance of SS316L fabricated by additive manufacturing was investigated. The SS316L has a microstructure formed by sub-grain cells, in which locally concentrated alloying elements form a stable passive film. As a result, it has a higher level of corrosion resistance and oxidation resistance than conventional cold-rolled materials. However, it was confirmed that the sub-grain cell was removed by heat treatment, which resulted in the degradation of corrosion and oxidation resistance.

6.
Materials (Basel) ; 13(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235613

RESUMO

This study was conducted on titanium diboride (TiB2) reinforced Al metal matrix composites (MMCs) with improved properties using a TiB2 and aluminum (Al) 1050 alloy. Al composites reinforced with fine TiB2 at volume ratios of more than 60% were successfully fabricated via the liquid pressing infiltration (LPI) process, which can be used to apply gas pressure at a high temperature. The microstructure of the TiB2-Al composite fabricated at 1000 °C with pressurization of 10 bar for 1 h showed that molten Al effectively infiltrated into the high volume-fraction TiB2 preform due to the improved wettability and external gas pressurization. In addition, the interface of TiB2 and Al not only had no cracks or pores but also had no brittle intermetallic compounds. In conclusion, TiB2-Al composite, which has a sound microstructure without defects, has improved mechanical properties, such as hardness and strength, due to effective load transfer from the Al matrix to the fine TiB2 reinforcement.

7.
Materials (Basel) ; 12(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623088

RESUMO

Aluminum alloy (Al7075) composites reinforced with a high volume fraction of silicon carbide (SiC) were produced by a liquid-pressing process. The characterization of their microstructure showed that SiC particles corresponding to a volume fraction greater than 60% were uniformly distributed in the composite, and Mg2Si precipitates were present at the interface between the matrix and the reinforcement. A superior compressive strength (1130 MPa) was obtained by an effective load transfer to the hard ceramic particles. After solution heat treatment and artificial aging, the Mg2Si precipitates decomposed from rod-shaped large particles to smaller spherical particles, which led to an increase of the compressive strength by more than 200 MPa. The strengthening mechanism is discussed on the basis of the observed microstructural evolution.

8.
Sci Rep ; 7(1): 14943, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097802

RESUMO

In order to explore the possibility of using carbon nanotube (CNT) to introduce and control the temperature coefficient of resistance (TCR) of metal matrix composite, relatively thick and short multi-walled CNTs (MWCNTs) were introduced in the metal matrix with in-situ formation of chromium carbide (Cr7C3) at the CNT/copper (Cu) interface. We demonstrate that incompatible properties such as electrical conductivity and TCR can be achieved simultaneously by introducing MWCNTs in the Cu matrix, with control of the interfacial resistivity using the MWCNT/Cr7C3-Cu system. High electrical conductivity of 94.66 IACS and low TCR of 1,451 10-6 °C-1 are achieved in the 5 vol.% MWCNT-CuCr composite. In-situ formation of Cr7C3 nanostructures at the MWCNT/Cu interface by reaction of diffused Cr atoms and amorphous carbon of MWCNTs would assist in improving the electrical properties of the MWCNT-CuCr composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...