Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 375(6578): 302-306, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050659

RESUMO

Improvements to perovskite solar cells (PSCs) have focused on increasing their power conversion efficiency (PCE) and operational stability and maintaining high performance upon scale-up to module sizes. We report that replacing the commonly used mesoporous-titanium dioxide electron transport layer (ETL) with a thin layer of polyacrylic acid-stabilized tin(IV) oxide quantum dots (paa-QD-SnO2) on the compact-titanium dioxide enhanced light capture and largely suppressed nonradiative recombination at the ETL-perovskite interface. The use of paa-QD-SnO2 as electron-selective contact enabled PSCs (0.08 square centimeters) with a PCE of 25.7% (certified 25.4%) and high operational stability and facilitated the scale-up of the PSCs to larger areas. PCEs of 23.3, 21.7, and 20.6% were achieved for PSCs with active areas of 1, 20, and 64 square centimeters, respectively.

2.
Nature ; 592(7854): 381-385, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33820983

RESUMO

Metal halide perovskites of the general formula ABX3-where A is a monovalent cation such as caesium, methylammonium or formamidinium; B is divalent lead, tin or germanium; and X is a halide anion-have shown great potential as light harvesters for thin-film photovoltaics1-5. Among a large number of compositions investigated, the cubic α-phase of formamidinium lead triiodide (FAPbI3) has emerged as the most promising semiconductor for highly efficient and stable perovskite solar cells6-9, and maximizing the performance of this material in such devices is of vital importance for the perovskite research community. Here we introduce an anion engineering concept that uses the pseudo-halide anion formate (HCOO-) to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films and to augment the crystallinity of the films. The resulting solar cell devices attain a power conversion efficiency of 25.6 per cent (certified 25.2 per cent), have long-term operational stability (450 hours) and show intense electroluminescence with external quantum efficiencies of more than 10 per cent. Our findings provide a direct route to eliminate the most abundant and deleterious lattice defects present in metal halide perovskites, providing a facile access to solution-processable films with improved optoelectronic performance.

3.
Science ; 369(6511): 1615-1620, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32973026

RESUMO

Further improvement and stabilization of perovskite solar cell (PSC) performance are essential to achieve the commercial viability of next-generation photovoltaics. Considering the benefits of fluorination to conjugated materials for energy levels, hydrophobicity, and noncovalent interactions, two fluorinated isomeric analogs of the well-known hole-transporting material (HTM) Spiro-OMeTAD are developed and used as HTMs in PSCs. The structure-property relationship induced by constitutional isomerism is investigated through experimental, atomistic, and theoretical analyses, and the fabricated PSCs feature high efficiency up to 24.82% (certified at 24.64% with 0.3-volt voltage loss), along with long-term stability in wet conditions without encapsulation (87% efficiency retention after 500 hours). We also achieve an efficiency of 22.31% in the large-area cell.

4.
Nano Lett ; 17(10): 6385-6390, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28895740

RESUMO

Edged-selectively fluorine (F) functionalized graphene nanoplatelets (EFGnPs-F) with a p-i-n structure of perovskite solar cells achieved 82% stability relative to initial performance over 30 days of air exposure without encapsulation. The enhanced stability stems from F-substitution on EFGnPs; fluorocarbons such as polytetrafluoroethylene are well-known for their superhydrophobic properties and being impervious to chemical degradation. These hydrophobic moieties tightly protect perovskite layers from air degradation. To directly compare the effect of similar hydrophilic graphene layers, edge-selectively hydrogen functionalized graphene nanoplatelet (EFGnPs-H) treated devices were tested under the same conditions. Like the pristine MAPbI3 perovskite devices, EFGnPs-H treated devices were completely degraded after 10 days. The hydrophobic properties of EFGnPs-F were characterized by contact angle measurement. The test results showed great water repellency compared to pristine perovskite films or EFGnPs-H coated films. This resulted in highly air-stable p-i-n perovskite solar cells.

5.
ACS Nano ; 11(6): 6057-6064, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28505416

RESUMO

Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 µm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm2 active area and 18% over a 1 cm2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.

6.
ACS Nano ; 9(12): 11820-9, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26513688

RESUMO

A stand-alone, wireless solar water splitting device without external energy supply has been realized by combining in tandem a CH3NH3PbI3 perovskite single junction solar cell with a cobalt carbonate (Co-Ci)-catalyzed, extrinsic/intrinsic dual-doped BiVO4 (hydrogen-treated and 3 at% Mo-doped). The photoanode recorded one of the highest photoelectrochemical water oxidation activity (4.8 mA/cm(2) at 1.23 VRHE) under simulated 1 sun illumination. The oxygen evolution Co-Ci co-catalyst showed similar performance to best known cobalt phosphate (Co-Pi) (5.0 mA/cm(2) at 1.23 VRHE) on the same dual-doped BiVO4 photoanode, but with significantly better stability. A tandem artificial-leaf-type device produced stoichiometric hydrogen and oxygen with an average solar-to-hydrogen efficiency of 4.3% (wired), 3.0% (wireless) under simulated 1 sun illumination. Hence, our device based on a D4 tandem photoelectrochemical cell represents a meaningful advancement in performance and cost over the device based on a triple-junction solar cell-electrocatalyst combination.

7.
Phys Chem Chem Phys ; 17(3): 2152-9, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25483363

RESUMO

Although polymer solar cells (PSCs) have received a tremendous amount of attention in recent years, a number of criteria must be met in order for them to be suitable as practical and commercially feasible power sources, including high performance, good air stability and inexpensive manufacturing. In this contribution, we determine the optimal top electrode for practical PSC fabrication by investigating the influence of the electrode material on the optical properties and performance of PSC devices. The optical properties of eight metals were considered, out of which three metal electrodes (aluminum (Al), silver (Ag), gold (Au)) with the best optical properties were used to prepare inverted PSC devices comprising a blended polymer thieno[3,4-b]thiophene/benzodithiophene (PTB7) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM). Among the photovoltaic parameters, the short circuit current density (JSC) was most strongly affected by the optical properties of the top electrode. In the results of the experiment, the J(SC) of the Al and Ag electrode devices was found to be approximately 13% (13.4 → 15.1 mA cm(-2)) higher than the Au electrode device due to the significant parasitic absorption of light by Au at wavelengths below 600 nm. In contrast, Al and Ag electrodes have high reflectance throughout the visible spectrum, which leads to high J(SC). Ag electrodes have relatively good stability to ambient exposure, maintaining over 96% of the original efficiency after 170 hours; this stability is comparable to Au. These data lead to the conclusion that Ag is the optimal top electrode material for use in inverted devices.

8.
Chem Commun (Camb) ; 48(65): 8057-9, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22499057

RESUMO

We report the preparation of highly interconnected ordered mesoporous carbon-carbon nanotube nanocomposites which show Pt-like dye-sensitized solar cell (DSSC) efficiency and remarkable long-term durability as DSSC counter electrodes.

9.
Nanoscale Res Lett ; 6(1): 521, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21888639

RESUMO

There are many practical difficulties in direct adsorption of polymers onto nanocrystalline inorganic oxide surface such as Al2O3 and TiO2 mainly due to the insolubility of polymers in solvents or polymer agglomeration during adsorption process. As an alternative approach to the direct polymer adsorption, we propose surface-bound polymerization of pre-adsorbed monomers. 6-(3-Thienyl)hexanoic acid (THA) was used as a monomer for poly[3-(5-carboxypentyl)thiophene-2,5-diyl] (PTHA). PTHA-coated nanocrystalline TiO2/FTO glass electrodes were prepared by immersing THA-adsorbed electrodes in FeCl3 oxidant solution. Characterization by ultraviolet/visible/infrared spectroscopy and thermal analysis showed that the monolayer of regiorandom-structured PTHA was successfully formed from intermolecular bonding between neighbored THA surface-bound to TiO2. The anchoring functional groups (-COOH) of the surface-crawling PTHA were completely utilized for strong bonding to the surface of TiO2.

10.
ACS Appl Mater Interfaces ; 3(2): 512-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21268664

RESUMO

Pyridinium iodide salts, which are competitive to the conventional imidazolium iodide salts, have been used for dye-sensitized solar cells as iodide sources and ionic conductivities. Pyridinium iodide series are easy to prepare and less expensive than the imidazolium series salts. In this research, quite comparable efficiencies were obtained from electrolytes with pyridinium iodide salts. For the experiments, pyridinium salts with a few different alkyl chains are applied. When a pyridinium head is modified to picolinium, which has a methyl group on the pyridinium head, a noticeable V(oc) drop has been observed. However, the length of the alkyl chains on the pyridinium head does not affect V(oc) effectively. The odd-numbered alkyl chains showed slightly lower V(oc) compared to that of the even-numbered alkyl chains. Finally, the performances of the cells with pyridinium salts are compared to those of the conventional cells with imidazolium salts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...