Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(13): e202303755, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149882

RESUMO

A structurally precise hydride-containing Pt-doped Cu-rich nanocluster [PtH2 Cu14 {S2 P(Oi Pr)2 }6 (CCPh)6 ] (1) has been synthesized. It consists of a bicapped icosahedral Cu14 cage that encapsulates a linear PtH2 unit. Upon the addition of two equivalents of CF3 COOH to 1, two hydrido clusters are isolated. These clusters are [PtHCu11 {S2 P(Oi Pr)2 }6 (CCPh)4 ] (2), which is a vertex-missing Cu11 cuboctahedron encaging a PtH moiety, and [PtH2 Cu11 {S2 P(Oi Pr)2 }6 (CCPh)3 ] (3), a distorted 3,3,4,4,4-pentacapped trigonal prismatic Cu11 cage enclosing a PtH2 unit. The electronic structure of 2, analyzed by Density Functional Theory, is a 2e superatom. The electrocatalytic activities of 1-3 for hydrogen evolution reaction (HER) were compared. Notably, Cluster 2 exhibited an exceptionally excellent HER activity within metal nanoclusters, with an onset potential of -0.03 V (at 10 mA cm-2 ), a Tafel slope of 39 mV dec-1 , and consistent HER activity throughout 3000 cycles in 0.5 M H2 SO4 . Our study suggests that the accessible central Pt site plays a crucial role in the remarkable HER activity and may provide valuable insights for establishing correlations between catalyst structure and HER activity.

2.
Angew Chem Int Ed Engl ; 62(16): e202301272, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36807455

RESUMO

The first hydride-containing 2-electron palladium/copper alloys, [PdHCu11 {S2 P(Oi Pr)2 }6 (C≡CPh)4 ] (PdHCu11 ) and [PdHCu12 {S2 P(Oi Pr)2 }5 {S2 PO(Oi Pr)} (C≡CPh)4 ] (PdHCu12 ), are synthesized from the reaction of [PdH2 Cu14 {S2 P(Oi Pr)2 }6 (C≡CPh)6 ] (PdH2 Cu14 ) with trifluoroacetic acid (TFA). X-ray diffraction reveals that the PdHCu11 and PdHCu12 kernels consist of a central PdH unit encapsulated within a vertex-missing Cu11 cuboctahedron and complete Cu12 cuboctahedron, respectively. DFT calculations indicate that both PdHCu11 and PdHCu12 can be considered as axially-distorted 2-electron superatoms. PdHCu11 shows excellent HER activity, unprecedented within metal nanoclusters, with an onset potential of -0.05 V (at 10 mA cm-2 ), a Tafel slope of 40 mV dec-1 , and consistent HER activity during 1000 cycles in 0.5 M H2 SO4 . Our study suggests that the accessible central Pd site is the key to HER activity and may provide guidelines for correlating catalyst structures and HER activity.

3.
J Am Chem Soc ; 145(4): 2152-2160, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657026

RESUMO

Electrocatalytic CO2 reduction reaction (CO2RR) is greatly facilitated by Au surfaces. However, large fractions of underlying Au atoms are generally unused during the catalytic reaction, which limits mass activity. Herein, we report a strategy for preparing efficient electrocatalysts with high mass activities by the atomic-level transplantation of Au active sites into a Ni4 nanocluster (NC). While the Ni4 NC exclusively produces H2, the Au-transplanted NC selectively produces CO over H2. The origin of the contrasting selectivity observed for this NC is investigated by combining operando and theoretical studies, which reveal that while the Ni sites are almost completely blocked by the CO intermediate in both NCs, the Au sites act as active sites for CO2-to-CO electroreduction. The Au-transplanted NC exhibits a remarkable turnover frequency and mass activity for CO production (206 molCO/molNC/s and 25,228 A/gAu, respectively, at an overpotential of 0.32 V) and high durability toward the CO2RR over 25 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...