Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(37): eadi7838, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703372

RESUMO

Tubulin posttranslational modifications represent an important mechanism involved in the regulation of microtubule functions. The most widespread among them are detyrosination, α∆2-tubulin, and polyglutamylation. Here, we describe a family of tubulin-modifying enzymes composed of two closely related proteins, KIAA0895L and KIAA0895, which have tubulin metallocarboxypeptidase activity and thus were termed TMCP1 and TMCP2, respectively. We show that TMCP1 (also known as MATCAP) acts as α-tubulin detyrosinase that also catalyzes α∆2-tubulin. In contrast, TMCP2 preferentially modifies ßI-tubulin by removing three amino acids from its C terminus, generating previously unknown ßI∆3 modification. We show that ßI∆3-tubulin is mostly found on centrioles and mitotic spindles and in cilia. Moreover, we demonstrate that TMCPs also remove posttranslational polyglutamylation and thus act as tubulin deglutamylases. Together, our study describes the identification and comprehensive biochemical analysis of a previously unknown type of tubulin-modifying enzymes involved in the processing of α- and ß-tubulin C-terminal tails and deglutamylation.


Assuntos
Carboxipeptidases , Tubulina (Proteína) , Microtúbulos , Aminoácidos , Centríolos
2.
J Cell Biol ; 222(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37756660

RESUMO

Cilia are essential organelles that protrude from the cell body. Cilia are made of a microtubule-based structure called the axoneme. In most types of cilia, the ciliary tip is distinct from the rest of the cilium. Here, we used cryo-electron tomography and subtomogram averaging to obtain the structure of the ciliary tip of the ciliate Tetrahymena thermophila. We show that the microtubules at the tip are highly crosslinked with each other and stabilized by luminal proteins, plugs, and cap proteins at the plus ends. In the tip region, the central pair lacks typical projections and twists significantly. By analyzing cells lacking a ciliary tip-enriched protein CEP104/FAP256 by cryo-electron tomography and proteomics, we discovered candidates for the central pair cap complex and explained the potential functions of CEP104/FAP256. These data provide new insights into the function of the ciliary tip and the mechanisms of ciliary assembly and length regulation.


Assuntos
Cílios , Microtúbulos , Tetrahymena thermophila , Axonema , Cílios/metabolismo , Microtúbulos/metabolismo , Tetrahymena thermophila/metabolismo
3.
Cells ; 12(14)2023 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-37508530

RESUMO

Compounds that disrupt microtubule dynamics, such as colchicine, paclitaxel, or Vinca alkaloids, have been broadly used in biological studies and have found application in clinical anticancer medications. However, their main disadvantage is the lack of specificity towards cancerous cells, leading to severe side effects. In this paper, we report the first synthesis of 12 new visible light photoswitchable colchicine-based microtubule inhibitors AzoCols. Among the obtained compounds, two photoswitches showed light-dependent cytotoxicity in cancerous cell lines (HCT116 and MCF-7). The most promising compound displayed a nearly twofold increase in potency. Moreover, dissimilar inhibition of purified tubulin polymerisation in cell-free assay and light-dependent disruption of microtubule organisation visualised by immunofluorescence imaging sheds light on the mechanism of action as microtubule photoswitchable destabilisers. The presented results provide a foundation towards the synthesis and development of a novel class of photoswitchable colchicine-based microtubule polymerisation inhibitors.


Assuntos
Antineoplásicos , Colchicina , Colchicina/farmacologia , Antineoplásicos/farmacologia , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia
4.
Mol Biol Cell ; 34(8): ar82, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163326

RESUMO

Ciliates, such as Tetrahymena thermophila, evolved complex mechanisms to determine both the location and dimensions of cortical organelles such as the oral apparatus (OA: involved in phagocytosis), cytoproct (Cyp: for eliminating wastes), and contractile vacuole pores (CVPs: involved in water expulsion). Mutations have been recovered in Tetrahymena that affect both the localization of such organelles along anterior-posterior and circumferential body axes and their dimensions. Here we describe BCD1, a ciliate pattern gene that encodes a conserved Beige-BEACH domain-containing protein a with possible protein kinase A (PKA)-anchoring activity. Similar proteins have been implicated in endosome trafficking and are linked to human Chediak-Higashi syndrome and autism. Mutations in the BCD1 gene broaden cortical organelle domains as they assemble during predivision development. The Bcd1 protein localizes to membrane pockets at the base of every cilium that are active in endocytosis. PKA activity has been shown to promote endocytosis in other organisms, so we blocked clathrin-mediated endocytosis (using "dynasore") and inhibited PKA (using H89). In both cases, treatment produced partial phenocopies of the bcd1 pattern mutant. This study supports a model in which the dimensions of diverse cortical organelle assembly-platforms may be determined by regulated balance between constitutive exocytic delivery and PKA-regulated endocytic retrieval of organelle materials and determinants.


Assuntos
Tetrahymena thermophila , Humanos , Tetrahymena thermophila/fisiologia , Endossomos , Endocitose , Fagocitose , Vacúolos
5.
Molecules ; 28(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110792

RESUMO

Cancer is one of the most common causes of human death worldwide; thus, numerous therapies, including chemotherapy, have been and are being continuously developed. In cancer cells, an aberrant mitotic spindle-a microtubule-based structure necessary for the equal splitting of genetic material between daughter cells-leads to genetic instability, one of the hallmarks of cancer. Thus, the building block of microtubules, tubulin, which is a heterodimer formed from α- and ß-tubulin proteins, is a useful target in anti-cancer research. The surface of tubulin forms several pockets, i.e., sites that can bind factors that affect microtubules' stability. Colchicine pockets accommodate agents that induce microtubule depolymerization and, in contrast to factors that bind to other tubulin pockets, overcome multi-drug resistance. Therefore, colchicine-pocket-binding agents are of interest as anti-cancer drugs. Among the various colchicine-site-binding compounds, stilbenoids and their derivatives have been extensively studied. Herein, we report systematic studies on the antiproliferative activity of selected stilbenes and oxepine derivatives against two cancer cell lines-HCT116 and MCF-7-and two normal cell lines-HEK293 and HDF-A. The results of molecular modeling, antiproliferative activity, and immunofluorescence analyses revealed that compounds 1a, 1c, 1d, 1i, 2i, 2j, and 3h were the most cytotoxic and acted by interacting with tubulin heterodimers, leading to the disruption of the microtubular cytoskeleton.


Assuntos
Antineoplásicos , Neoplasias , Estilbenos , Humanos , Tubulina (Proteína)/metabolismo , Estilbenos/química , Oxepinas/metabolismo , Células HEK293 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Microtúbulos/metabolismo , Antineoplásicos/química , Colchicina/química , Moduladores de Tubulina/química , Sítios de Ligação , Proliferação de Células
6.
Nat Commun ; 14(1): 2168, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061538

RESUMO

Cilia are ubiquitous eukaryotic organelles responsible for cellular motility and sensory functions. The ciliary axoneme is a microtubule-based cytoskeleton consisting of two central singlets and nine outer doublet microtubules. Cryo-electron microscopy-based studies have revealed a complex network inside the lumen of both tubules composed of microtubule-inner proteins (MIPs). However, the functions of most MIPs remain unknown. Here, we present single-particle cryo-EM-based analyses of the Tetrahymena thermophila native doublet microtubule and identify 42 MIPs. These data shed light on the evolutionarily conserved and diversified roles of MIPs. In addition, we identified MIPs potentially responsible for the assembly and stability of the doublet outer junction. Knockout of the evolutionarily conserved outer junction component CFAP77 moderately diminishes Tetrahymena swimming speed and beat frequency, indicating the important role of CFAP77 and outer junction stability in cilia beating generation and/or regulation.


Assuntos
Tetrahymena thermophila , Tetrahymena , Tetrahymena thermophila/metabolismo , Microscopia Crioeletrônica , Microtúbulos/metabolismo , Axonema/metabolismo , Citoesqueleto/metabolismo , Cílios/metabolismo , Proteínas dos Microtúbulos/metabolismo , Tetrahymena/metabolismo
7.
Semin Cell Dev Biol ; 137: 3-15, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922809

RESUMO

Protists are an exceptionally diverse group of mostly single-celled eukaryotes. The organization of the microtubular cytoskeleton in protists from various evolutionary lineages has different levels of sophistication, from a network of microtubules (MTs) supporting intracellular trafficking as in Dictyostelium, to complex structures such as basal bodies and cilia/flagella enabling cell motility, and lineage-specific adaptations such as the ventral disc in Giardia. MTs building these diverse structures have specific properties partly due to the presence of tubulin post-translational modifications (PTMs). Among them there are highly evolutionarily conserved PTMs: acetylation, detyrosination, (poly)glutamylation and (poly)glycylation. In some protists also less common tubulin PTMs were identified, including phosphorylation, methylation, Δ2-, Δ5- of α-tubulin, polyubiquitination, sumoylation, or S-palmitoylation. Not surprisingly, several single-celled organisms become models to study tubulin PTMs, including their effect on MT properties and discovery of the modifying enzymes. Here, we briefly summarize the current knowledge on tubulin PTMs in unicellular eukaryotes and highlight key findings in protists as model organisms.


Assuntos
Dictyostelium , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Dictyostelium/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Eucariotos/metabolismo
8.
Cells ; 11(24)2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36552811

RESUMO

Motile cilia and eukaryotic flagella are specific cell protrusions that are conserved from protists to humans. They are supported by a skeleton composed of uniquely organized microtubules-nine peripheral doublets and two central singlets (9 × 2 + 2). Microtubules also serve as docking sites for periodically distributed multiprotein ciliary complexes. Radial spokes, the T-shaped ciliary complexes, repeat along the outer doublets as triplets and transduce the regulatory signals from the cilium center to the outer doublet-docked dynein arms. Using the genetic, proteomic, and microscopic approaches, we have shown that lack of Tetrahymena Cfap91 protein affects stable docking/positioning of the radial spoke RS3 and the base of RS2, and adjacent inner dynein arms, possibly due to the ability of Cfap91 to interact with a molecular ruler protein, Ccdc39. The localization studies confirmed that the level of RS3-specific proteins, Cfap61 and Cfap251, as well as RS2-associated Cfap206, are significantly diminished in Tetrahymena CFAP91-KO cells. Cilia of Tetrahymena cells with knocked-out CFAP91 beat in an uncoordinated manner and their beating frequency is dramatically reduced. Consequently, CFAP91-KO cells swam about a hundred times slower than wild-type cells. We concluded that Tetrahymena Cfap91 localizes at the base of radial spokes RS2 and RS3 and likely plays a role in the radial spoke(s) positioning and stability.


Assuntos
Cílios , Tetrahymena , Axonema/metabolismo , Cílios/metabolismo , Dineínas , Proteômica , Tetrahymena/metabolismo
9.
Insects ; 13(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35621821

RESUMO

The molecular oscillator is the core of the biological clock and is formed by genes and proteins whose cyclic expression is regulated in the transcriptional-translational feedback loops (TTFLs). Proteins of the TTFLs are regulators of both their own and executive genes involved in the control of many processes in insects (e.g., rhythmic metabolism of xenobiotics, including insecticides). We disrupted the clock operation in S. littoralis larvae by injecting the dsRNA of clock genes into their body cavity and culturing the larvae under continuous light. As a result, the daily susceptibility of larvae to insecticides was abolished and the susceptibility itself increased (in most cases). In the fat body, midgut, and Malpighian tubules (the main organs metabolizing xenobiotics) of the larvae treated with injected-dsRNA, the daily activity profiles of enzymes involved in detoxification-cytochrome P450 monooxygenases, Glutathione-S-transferase, and esterase-have changed significantly. The presented results prove the role of the molecular oscillator in the regulation of larvae responses to insecticides and provide grounds for rational use of these compounds (at suitable times of the day), and may indicate clock genes as potential targets of molecular manipulation to produce plant protection compounds based on the RNAi method.

11.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163666

RESUMO

Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.


Assuntos
Transtornos da Motilidade Ciliar/genética , Modelos Animais de Doenças , Animais , Organismos Aquáticos/fisiologia , Técnicas de Cultura de Células , Humanos , Mamíferos/fisiologia
12.
Sci Rep ; 11(1): 11760, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083607

RESUMO

Motile cilia are ultrastructurally complex cell organelles with the ability to actively move. The highly conserved central apparatus of motile 9 × 2 + 2 cilia is composed of two microtubules and several large microtubule-bound projections, including the C1b/C1f supercomplex. The composition and function of C1b/C1f subunits has only recently started to emerge. We show that in the model ciliate Tetrahymena thermophila, C1b/C1f contains several evolutionarily conserved proteins: Spef2A, Cfap69, Cfap246/LRGUK, Adgb/androglobin, and a ciliate-specific protein Tt170/TTHERM_00205170. Deletion of genes encoding either Spef2A or Cfap69 led to a loss of the entire C1b projection and resulted in an abnormal vortex motion of cilia. Loss of either Cfap246 or Adgb caused only minor alterations in ciliary motility. Comparative analyses of wild-type and C1b-deficient mutant ciliomes revealed that the levels of subunits forming the adjacent C2b projection but not C1d projection are greatly reduced, indicating that C1b stabilizes C2b. Moreover, the levels of several IFT and BBS proteins, HSP70, and enzymes that catalyze the final steps of the glycolytic pathway: enolase ENO1 and pyruvate kinase PYK1, are also reduced in the C1b-less mutants.


Assuntos
Cílios/metabolismo , Microtúbulos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Movimento Celular/genética , Cílios/classificação , Cílios/genética , Cílios/ultraestrutura , Sequência Conservada , Espectrometria de Massas , Microtúbulos/química , Microtúbulos/ultraestrutura , Modelos Biológicos , Filogenia , Domínios e Motivos de Interação entre Proteínas/genética , Deleção de Sequência , Tetrahymena thermophila
13.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809498

RESUMO

Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.


Assuntos
Cílios/metabolismo , Flagelos/metabolismo , Nanopartículas/química , Animais , Cílios/ultraestrutura , Evolução Molecular , Microtúbulos/metabolismo , Proteínas/metabolismo
14.
Sci Rep ; 11(1): 7899, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846423

RESUMO

The base of the cilium comprising the transition zone (TZ) and transition fibers (TF) acts as a selecting gate to regulate the intraflagellar transport (IFT)-dependent trafficking of proteins to and from cilia. Before entering the ciliary compartment, IFT complexes and transported cargoes accumulate at or near the base of the cilium. The spatial organization of IFT proteins at the cilia base is key for understanding cilia formation and function. Using stochastic optical reconstruction microscopy (STORM) and computational averaging, we show that seven TZ, nine IFT, three Bardet-Biedl syndrome (BBS), and one centrosomal protein, form 9-clustered rings at the cilium base of a ciliate Tetrahymena thermophila. In the axial dimension, analyzed TZ proteins localize to a narrow region of about 30 nm while IFT proteins dock approximately 80 nm proximal to TZ. Moreover, the IFT-A subcomplex is positioned peripheral to the IFT-B subcomplex and the investigated BBS proteins localize near the ciliary membrane. The positioning of the HA-tagged N- and C-termini of the selected proteins enabled the prediction of the spatial orientation of protein particles and likely cargo interaction sites. Based on the obtained data, we built a comprehensive 3D-model showing the arrangement of the investigated ciliary proteins.


Assuntos
Cílios/metabolismo , Flagelos/metabolismo , Microscopia/métodos , Tetrahymena/metabolismo , Síndrome de Bardet-Biedl/metabolismo , Transporte Biológico , Ciliopatias/genética , Ciliopatias/patologia , Humanos , Mutação/genética , Proteínas de Protozoários/metabolismo
15.
PLoS Genet ; 17(3): e1009388, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33661892

RESUMO

Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.


Assuntos
Proteínas de Transporte/metabolismo , Cílios/fisiologia , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Plantas/metabolismo , Axonema/metabolismo , Proteínas de Transporte/química , Chlamydomonas/fisiologia , Cílios/ultraestrutura , Flagelos/fisiologia , Flagelos/ultraestrutura , Imunofluorescência , Proteínas Associadas aos Microtúbulos/química , Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Transporte Proteico , Relação Estrutura-Atividade , Tetrahymena thermophila/fisiologia
16.
Molecules ; 25(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823874

RESUMO

Microtubules (MTs), highly dynamic structures composed of α- and ß-tubulin heterodimers, are involved in cell movement and intracellular traffic and are essential for cell division. Within the cell, MTs are not uniform as they can be composed of different tubulin isotypes that are post-translationally modified and interact with different microtubule-associated proteins (MAPs). These diverse intrinsic factors influence the dynamics of MTs. Extrinsic factors such as microtubule-targeting agents (MTAs) can also affect MT dynamics. MTAs can be divided into two main categories: microtubule-stabilizing agents (MSAs) and microtubule-destabilizing agents (MDAs). Thus, the MT skeleton is an important target for anticancer therapy. This review discusses factors that determine the microtubule dynamics in normal and cancer cells and describes microtubule-MTA interactions, highlighting the importance of tubulin isoform diversity and post-translational modifications in MTA responses and the consequences of such a phenomenon, including drug resistance development.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neoplasias/patologia , Animais , Divisão Celular , Humanos , Neoplasias/metabolismo
17.
J Cell Biol ; 219(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32642758

RESUMO

Not much is known about how organelles organize into patterns. In ciliates, the cortical pattern is propagated during "tandem duplication," a cell division that remodels the parental cell into two daughter cells. A key step is the formation of the division boundary along the cell's equator. In Tetrahymena thermophila, the cdaA alleles prevent the formation of the division boundary. We find that the CDAA gene encodes a cyclin E that accumulates in the posterior cell half, concurrently with accumulation of CdaI, a Hippo/Mst kinase, in the anterior cell half. The division boundary forms between the margins of expression of CdaI and CdaA, which exclude each other from their own cortical domains. The activities of CdaA and CdaI must be balanced to initiate the division boundary and to position it along the cell's equator. CdaA and CdaI cooperate to position organelles near the new cell ends. Our data point to an intracellular positioning mechanism involving antagonistic Hippo signaling and cyclin E.


Assuntos
Ciclina E/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Divisão Celular/fisiologia , Humanos , Organelas/metabolismo , Tetrahymena thermophila/metabolismo
18.
Parasitology ; 147(13): 1480-1487, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32729450

RESUMO

The gastrointestinal nematode Heligmosomoides polygyrus bakeri shows enhanced survival in mice with colitis. As the antibody response plays an important role in antiparasitic immunity, antibodies against male and female L4 H. polygyrus were examined in mice with and without colitis. Levels of specific antibodies in the mucosa and serum were determined by enzyme-linked immunosorbent assay and immunogenic proteins of male and female parasites were identified using 2D electrophoresis and mass spectrometry. The function of identified proteins was explored with Blast2Go. Nematodes in mice with colitis induced higher levels of specific immunoglobulin G (IgG1) and IgA, a lower level of IgE in the small intestine and a higher level of IgE in serum against female L4. Infected mice with colitis recognized 12 proteins in male L4 and 10 in female L4. Most of the recognized proteins from male L4 were intermediate filament proteins, whereas the proteins from female L4 were primarily actins and galectins. Nematodes from mice with colitis were immunogenically different from nematodes from control mice. This phenomenon gives new insights into helminth therapy as well as host-parasite interactions.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Colite/imunologia , Proteínas de Helminto/imunologia , Nematospiroides dubius/fisiologia , Proteoma/imunologia , Infecções por Strongylida/imunologia , Animais , Colite/parasitologia , Feminino , Intestinos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Strongylida/parasitologia
19.
Eur J Protistol ; 76: 125722, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32679518

RESUMO

Cilia and flagella play an important role in motility, sensory perception, and the life cycles of eukaryotes, from protists to humans. However, much critical information concerning cilia structure and function remains elusive. The vast majority of ciliary and flagellar proteins analyzed so far are evolutionarily conserved and play a similar role in protozoa and vertebrates. This makes protozoa attractive biological models for studying cilia biology. Research conducted on ciliated or flagellated protists may improve our general understanding of cilia protein composition, of cilia beating, and can shed light on the molecular basis of the human disorders caused by motile cilia dysfunction. The Symposium "From genomics to flagellar and ciliary structures and cytoskeleton dynamics" at ECOP2019 in Rome presented the latest discoveries about cilia biogenesis and the molecular mechanisms of ciliary and flagellum motility based on studies in Paramecium, Tetrahymena, and Trypanosoma. Here, we review the most relevant aspects presented and discussed during the symposium and add our perspectives for future research.


Assuntos
Citoesqueleto/ultraestrutura , Genoma de Protozoário/genética , Paramecium , Tetrahymena , Trypanosoma , Cílios/genética , Congressos como Assunto , Flagelos/genética , Paramecium/genética , Paramecium/ultraestrutura , Tetrahymena/genética , Tetrahymena/ultraestrutura , Trypanosoma/genética , Trypanosoma/ultraestrutura
20.
Cells ; 9(2)2020 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991798

RESUMO

Katanin-like 2 protein (Katnal2) orthologs have a tripartite domain organization. Two highly conserved regions, an N-terminal LisH (Lis-homology) domain and a C-terminal AAA catalytic domain, are separated by a less conserved linker. The AAA domain of Katnal2 shares the highest amino acid sequence homology with the AAA domain of the canonical katanin p60. Katnal2 orthologs are present in a wide range of eukaryotes, from protists to humans. In the ciliate Tetrahymena thermophila, a Katnal2 ortholog, Kat2, co-localizes with the microtubular structures, including basal bodies and ciliary outer doublets, and this co-localization is sensitive to levels of microtubule glutamylation. The functional analysis of Kat2 domains suggests that an N-terminal fragment containing a LisH domain plays a role in the subcellular localization, dimerization, and stability of Kat2.


Assuntos
Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Tetrahymena/metabolismo , Ácido Glutâmico/metabolismo , Microscopia Eletrônica de Transmissão , Microtúbulos/ultraestrutura , Mutação , Domínios Proteicos , Multimerização Proteica/genética , Estabilidade Proteica , Tetrahymena/enzimologia , Tetrahymena/genética , Tetrahymena/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...