Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168915

RESUMO

The p38 MAPK pathway is well known for its role in transducing stress signals from the environment. Many key players and regulatory mechanisms of this signaling cascade have been described to some extent. Nevertheless, p38 participates in a broad range of cellular activities, for many of which detailed molecular pictures are still lacking. Originally described as a tumor-suppressor kinase for its inhibitory role in RAS-dependent transformation, p38 can also function as a tumor promoter, as demonstrated by extensive experimental data. This finding has prompted the development of specific inhibitors that have been used in clinical trials to treat several human malignancies, although without much success to date. However, elucidating critical aspects of p38 biology, such as isoform-specific functions or its apparent dual nature during tumorigenesis, might open up new possibilities for therapy with unexpected potential. In this review, we provide an extensive description of the main biological functions of p38 and focus on recent studies that have addressed its role in cancer. Furthermore, we provide an updated overview of therapeutic strategies targeting p38 in cancer and promising alternatives currently being explored.


Assuntos
Antineoplásicos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Antineoplásicos/farmacologia , Estudos Clínicos como Assunto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Cell Rep ; 27(3): 847-859.e6, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995481

RESUMO

Alternative splicing is a prevalent mechanism of gene regulation that is modulated in response to a wide range of extracellular stimuli. Stress-activated protein kinases (SAPKs) play a key role in controlling several steps of mRNA biogenesis. Here, we show that osmostress has an impact on the regulation of alternative splicing (AS), which is partly mediated through the action of p38 SAPK. Splicing network analysis revealed a functional connection between p38 and the spliceosome component SKIIP, whose depletion abolished a significant fraction of p38-mediated AS changes. Importantly, p38 interacted with and directly phosphorylated SKIIP, thereby altering its activity. SKIIP phosphorylation regulated AS of GADD45α, the upstream activator of the p38 pathway, uncovering a negative feedback loop involving AS regulation. Our data reveal mechanisms and targets of SAPK function in stress adaptation through the regulation of AS.


Assuntos
Processamento Alternativo , Coativadores de Receptor Nuclear/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Processamento Alternativo/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Imidazóis/farmacologia , MAP Quinase Quinase 6/metabolismo , Coativadores de Receptor Nuclear/antagonistas & inibidores , Coativadores de Receptor Nuclear/genética , Pressão Osmótica , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Piridinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Cloreto de Sódio/farmacologia , Quinases Dyrk
3.
Mol Cell Oncol ; 4(1): e1268242, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197540

RESUMO

The N-term phosphorylation of Retinoblastoma (RB) by the p38 stress-activated protein kinase (SAPK) makes RB insensitive to cyclin-dependent kinase (CDK)-Cyclin inhibition, which enhances the transcriptional repression of E2F-driven promoters and delays tumor cell growth. This novel mechanism of RB regulation opens up a window for developing new cancer drug treatments for tumors harboring high CDK-Cyclin activity and a wild-type RB gene.

4.
Mol Cell ; 64(1): 25-36, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27642049

RESUMO

Control of the G1/S phase transition by the Retinoblastoma (RB) tumor suppressor is critical for the proliferation of normal cells in tissues, and its inactivation is one of the most fundamental events leading to cancer. Cyclin-dependent kinase (CDK) phosphorylation inactivates RB to promote cell cycle-regulated gene expression. Here we show that, upon stress, the p38 stress-activated protein kinase (SAPK) maximizes cell survival by downregulating E2F gene expression through the targeting of RB. RB undergoes selective phosphorylation by p38 in its N terminus; these phosphorylations render RB insensitive to the inactivation by CDKs. p38 phosphorylation of RB increases its affinity toward the E2F transcription factor, represses gene expression, and delays cell-cycle progression. Remarkably, introduction of a RB phosphomimetic mutant in cancer cells reduces colony formation and decreases their proliferative and tumorigenic potential in mice.


Assuntos
Neoplasias da Mama/genética , Quinases Ciclina-Dependentes/genética , Fatores de Transcrição E2F/genética , Regulação Neoplásica da Expressão Gênica , Proteína do Retinoblastoma/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Quinases Ciclina-Dependentes/metabolismo , Fatores de Transcrição E2F/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Mimetismo Molecular , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
EMBO J ; 31(13): 2952-64, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22569127

RESUMO

The p57(Kip2) cyclin-dependent kinase inhibitor (CDKi) has been implicated in embryogenesis, stem-cell senescence and pathologies, but little is known of its role in cell cycle control. Here, we show that p57(Kip2) is targeted by the p38 stress-activated protein kinase (SAPK). Phosphorylation of p57(Kip2) at T143 by p38 enhances its association with and inhibition of Cdk2, which results in cell-cycle delay upon stress. Genetic inactivation of the SAPK or the CDKi abolishes cell-cycle delay upon osmostress and results in decreased cell viability. Oxidative stress and ionomycin also induce p38-mediated phosphorylation of p57 and cells lacking p38 or p57 display reduced viability to these stresses. Therefore, cell survival to various stresses depends on p57 phosphorylation by p38 that inhibits CDK activity. Together, these findings provide a novel molecular mechanism by which cells can delay cell cycle progression to maximize cell survival upon stress.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57/fisiologia , Transdução de Sinais/fisiologia , Animais , Ionóforos de Cálcio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p57/genética , Células HEK293 , Humanos , Ionomicina/farmacologia , Camundongos , Pressão Osmótica/efeitos dos fármacos , Pressão Osmótica/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
J Biol Chem ; 285(41): 31819-28, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20682780

RESUMO

In mammals, the stress-activated protein kinase (SAPK) p38 coordinates a rapid and complex transcriptional program to adapt to sudden changes in the extracellular environment. Although a number of genes have been reported to be under the control of p38, the basic mechanisms of transcriptional regulation by this SAPK remain uncharacterized. Here we show that in response to osmotic shock, anisomycin- or TNFα-activated p38 SAPK is recruited to stress-induced genes. The MAPKK MKK6 is also found at stress-responsive promoters. The recruitment of RNA polymerase II complex to the target promoters requires p38 activity. Moreover, when tethered to DNA as a LexA fusion protein, p38 activates transcription in a stress-regulated manner. Thus, p38 activity allows for recruitment of RNA polymerase and transcription initiation. p38 directly phosphorylates and interacts with the transcription factor Elk1. p38 activity is necessary for the recruitment of Elk1 to the c-Fos promoter, and knocking down Elk1 by siRNAs compromises both p38 recruitment to the c-Fos promoter and c-Fos transcriptional up-regulation upon osmostress. In addition, p38 recruitment to the osmoinducible gene Cox2 and the TNFα target gene IL8 is mediated by the transcription factors AP1 and NFκB, respectively. Therefore, anchoring of active SAPK to target genes is mediated by transcription factors. The presence of active p38 at open reading frames also suggests the involvement of the SAPK in elongation. Taken together, SAPK recruitment to target genes appears to be a broad mechanism to regulate transcription that has been preserved from yeast to mammals.


Assuntos
Cromatina/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Anisomicina/farmacologia , Cromatina/genética , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Células HeLa , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Pressão Osmótica/efeitos dos fármacos , Pressão Osmótica/fisiologia , Regiões Promotoras Genéticas/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fator de Transcrição AP-1/genética , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
8.
BMC Genomics ; 11: 144, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20187982

RESUMO

BACKGROUND: Cells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs). Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli. RESULTS: Here, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs) treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFalpha and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38alpha SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38alpha the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580) and p38alpha deficient (p38alpha-/-) MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress. CONCLUSIONS: Our genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell adaptation to stress.


Assuntos
Perfilação da Expressão Gênica , Estresse Fisiológico , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Anisomicina/farmacologia , Células Cultivadas , Desidratação , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Necrose Tumoral alfa/farmacologia
9.
Cell Metab ; 7(5): 456-65, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18460336

RESUMO

Excess levels of circulating amino acids (AAs) play a causal role in specific human pathologies, including obesity and type 2 diabetes. Moreover, obesity and diabetes are contributing factors in the development of cancer, with recent studies suggesting that this link is mediated in part by AA activation of mammalian target of rapamycin (mTOR) Complex 1. AAs appear to mediate this response through class III phosphatidylinositol 3-kinase (PI3K), or human vacuolar protein sorting 34 (hVps34), rather than through the canonical class I PI3K pathway used by growth factors and hormones. Here we show that AAs induce a rise in intracellular Ca(2+) ([Ca(2+)](i)), which triggers mTOR Complex 1 and hVps34 activation. We demonstrate that the rise in [Ca(2+)](i) increases the direct binding of Ca(2+)/calmodulin (CaM) to an evolutionarily conserved motif in hVps34 that is required for lipid kinase activity and increased mTOR Complex 1 signaling. These findings have important implications regarding the basic signaling mechanisms linking metabolic disorders with cancer progression.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Leucina/farmacologia , Proteínas Quinases/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/metabolismo , Sítios de Ligação , Western Blotting , Células Cultivadas , Células HeLa , Humanos , Imunoprecipitação , Rim/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR , Transfecção
10.
Proc Natl Acad Sci U S A ; 102(40): 14238-43, 2005 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-16176982

RESUMO

During the evolution of metazoans and the rise of systemic hormonal regulation, the insulin-controlled class 1 phosphatidylinositol 3OH-kinase (PI3K) pathway was merged with the primordial amino acid-driven mammalian target of rapamycin (mTOR) pathway to control the growth and development of the organism. Insulin regulates mTOR function through a recently described canonical signaling pathway, which is initiated by the activation of class 1 PI3K. However, how the amino acid input is integrated with that of the insulin signaling pathway is unclear. Here we used a number of molecular, biochemical, and pharmacological approaches to address this issue. Unexpectedly, we found that a major pathway by which amino acids control mTOR signaling is distinct from that of insulin and that, instead of signaling through components of the insulin/class 1 PI3K pathway, amino acids mediate mTOR activation by signaling through class 3 PI3K, hVps34.


Assuntos
Aminoácidos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Western Blotting , Linhagem Celular Tumoral , Humanos , Microscopia de Fluorescência , Proteínas Monoméricas de Ligação ao GTP/genética , Neuropeptídeos/genética , RNA Interferente Pequeno/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Proteína Regulatória Associada a mTOR , Serina-Treonina Quinases TOR
11.
Nature ; 431(7005): 200-5, 2004 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-15306821

RESUMO

Elucidating the signalling mechanisms by which obesity leads to impaired insulin action is critical in the development of therapeutic strategies for the treatment of diabetes. Recently, mice deficient for S6 Kinase 1 (S6K1), an effector of the mammalian target of rapamycin (mTOR) that acts to integrate nutrient and insulin signals, were shown to be hypoinsulinaemic, glucose intolerant and have reduced beta-cell mass. However, S6K1-deficient mice maintain normal glucose levels during fasting, suggesting hypersensitivity to insulin, raising the question of their metabolic fate as a function of age and diet. Here, we report that S6K1-deficient mice are protected against obesity owing to enhanced beta-oxidation. However on a high fat diet, levels of glucose and free fatty acids still rise in S6K1-deficient mice, resulting in insulin receptor desensitization. Nevertheless, S6K1-deficient mice remain sensitive to insulin owing to the apparent loss of a negative feedback loop from S6K1 to insulin receptor substrate 1 (IRS1), which blunts S307 and S636/S639 phosphorylation; sites involved in insulin resistance. Moreover, wild-type mice on a high fat diet as well as K/K A(y) and ob/ob (also known as Lep/Lep) mice-two genetic models of obesity-have markedly elevated S6K1 activity and, unlike S6K1-deficient mice, increased phosphorylation of IRS1 S307 and S636/S639. Thus under conditions of nutrient satiation S6K1 negatively regulates insulin signalling.


Assuntos
Envelhecimento/fisiologia , Gorduras na Dieta/farmacologia , Resistência à Insulina/fisiologia , Obesidade/genética , Obesidade/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/deficiência , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Adipócitos/metabolismo , Animais , Glicemia/análise , Ativação Enzimática , Jejum/sangue , Jejum/fisiologia , Ácidos Graxos não Esterificados/sangue , Deleção de Genes , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina , Resistência à Insulina/genética , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/sangue , Obesidade/induzido quimicamente , Oxirredução , Fosfoproteínas/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Insulina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Transdução de Sinais/efeitos dos fármacos
12.
J Biol Chem ; 278(45): 44255-64, 2003 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-12947099

RESUMO

The cell cycle-regulated B-Myb transcription factor is required for early embryonic development and is implicated in regulating cell growth and differentiation. In addition to its transcriptional regulatory properties, recent data indicate that B-Myb can release active cyclin/Cdk2 activity from the retinoblastoma-related p107 protein by directly interacting with the p107 N terminus. As this p107 domain has homology to the cyclin-binding domains of the p21(Waf1/Cip1) family of cyclin-dependent kinase inhibitors (CKIs), we investigated in this study whether B-Myb could also interact with these CKIs. No in vivo interaction was found with either p21(Waf1/Cip1) or p27(KIP1), however, binding to p57(KIP2) was readily detectable in both in vivo and in vitro assays. The B-Myb-interacting region of p57(KIP2) mapped to the cyclin-binding domain. Consistent with this, B-Myb competed with cyclin A2 for binding to p57(KIP2), resulting in release of active cyclin/Cdk2 kinase. Moreover, B-Myb partially overcame the ability of p57(KIP2) to induce G1 arrest in Saos-2 cells. Despite similarities with previous p107 studies, the B-Myb domains required for interaction with p57(KIP2) were quite different from those implicated for p107. Thus, it is evident that B-Myb may promote cell proliferation by a non-transcriptional mechanism that involves release of active cyclin/Cdk2 from p57(KIP2) as well as p107.


Assuntos
Proteínas de Ciclo Celular , Quinases Ciclina-Dependentes/antagonistas & inibidores , Ciclinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Western Blotting , Quinases relacionadas a CDC2 e CDC28/metabolismo , Divisão Celular , Ciclina A/metabolismo , Ciclina A2 , Quinase 2 Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p57 , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Fase G1 , Deleção de Genes , Glutationa Transferase/genética , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Osteossarcoma , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão , Proteína p107 Retinoblastoma-Like , Relação Estrutura-Atividade , Transativadores/química , Transativadores/genética , Ativação Transcricional , Células Tumorais Cultivadas
13.
Mol Cell ; 11(6): 1457-66, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12820960

RESUMO

Tumor suppressor genes evolved as negative effectors of mitogen and nutrient signaling pathways, such that mutations in these genes can lead to pathological states of growth. Tuberous sclerosis (TSC) is a potentially devastating disease associated with mutations in two tumor suppressor genes, TSC1 and 2, that function as a complex to suppress signaling in the mTOR/S6K/4E-BP pathway. However, the inhibitory target of TSC1/2 and the mechanism by which it acts are unknown. Here we provide evidence that TSC1/2 is a GAP for the small GTPase Rheb and that insulin-mediated Rheb activation is PI3K dependent. Moreover, Rheb overexpression induces S6K1 phosphorylation and inhibits PKB phosphorylation, as do loss-of-function mutations in TSC1/2, but contrary to earlier reports Rheb has no effect on MAPK phosphorylation. Finally, coexpression of a human TSC2 cDNA harboring a disease-associated point mutation in the GAP domain, failed to stimulate Rheb GTPase activity or block Rheb activation of S6K1.


Assuntos
Insulina/farmacologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neuropeptídeos/metabolismo , Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células COS , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Chlorocebus aethiops , Genes Supressores de Tumor , Células HeLa , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Mutação Puntual , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Proteínas Repressoras/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor
14.
Oncogene ; 21(52): 7923-32, 2002 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-12439743

RESUMO

B-Myb is a cell-cycle regulated transcription factor which is implicated in cell proliferation and has an essential role in early embryonic development. In this study we examined the functions of B-Myb required to overcome G1 arrest in Saos-2 cells induced by the retinoblastoma-related p107 protein. Our results demonstrated that this activity was independent of B-Myb transactivation function, but correlated with its capacity to form an in vivo complex with p107. A large proportion of B-Myb formed complexes with p107 in cotransfected cells, however, B-Myb bound weakly to the related p130 protein and not at all to pRb. In contrast to the E2F transcription factors, which bind the p107 C-terminal pocket domain, B-Myb recognizes an N-terminal p107 region which overlaps the larger cyclin-binding domain. B-Myb and cyclin A2 formed mutually exclusive complexes with p107, and B-Myb enhanced the activity of co-transfected cyclin E kinase activity, implying that B-Myb affects the cell cycle by preventing sequestration of active cyclin/cdk2 complexes. This study defines a novel function of B-Myb and further suggests that the p107 N-terminus provides an interaction domain for transcription factors involved in cell cycle control.


Assuntos
Proteínas de Ciclo Celular , Divisão Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Nucleares/fisiologia , Transativadores/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Ciclina A/metabolismo , Ciclina A2 , Ciclina E/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fase G1/fisiologia , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Testes de Precipitina , Ligação Proteica , Proteína p107 Retinoblastoma-Like , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional , Células Tumorais Cultivadas
15.
Biochim Biophys Acta ; 1574(2): 131-6, 2002 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11955621

RESUMO

The expression of F-type 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is rapidly induced by growth factors. We report here that an AP-1 intragenic sequence located at position +612 of the F-type 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase transcription initiation site is involved in the transcriptional activation of this gene by serum. We have demonstrated in vitro DNA-protein interaction on this AP-1 site of the F-promoter. Indeed, this element was recognized by c-Fos and JunD in vitro, and mutation or deletion of this element reduced the early response to serum stimulation by 60%. We conclude that the serum response of the F-type 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene requires the co-ordinated function of ets, E2F and AP-1 binding sites.


Assuntos
Fosfofrutoquinase-2/genética , Fator de Transcrição AP-1/genética , Animais , Sangue , Células Cultivadas , Ensaio de Desvio de Mobilidade Eletroforética , Íntrons , Fosfofrutoquinase-2/biossíntese , Ratos , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...