Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(26): 17190-5, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26932296

RESUMO

The translational and rotational dynamics of neopentane adsorbed in the one-dimensional channels of MIL-47(V) has been studied by quasi-elastic neutron scattering. The rotational motion of neopentane is well-described by the rotational diffusion model, with a correlation time of 41 ps at 300 K. The translational motion of the molecule has been fitted by several models: isotropic diffusion, normal 1D and single-file diffusion. It is found that the observed line shapes can only be reproduced by the single-file diffusion model. The single-file mobility factor, F, is (8 ± 1) × 10(-14) m(2) s(-1/2) at 300 K. This is the first observation of this unusual diffusion behaviour in a MOF.

2.
Phys Rev Lett ; 106(15): 157401, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568614

RESUMO

We have performed in situ quasielastic neutron scattering (QENS) measurements on zeolite-guest systems under microwave irradiation, for comparison with corresponding simulations. Both experiment and simulation reveal selective heating of methanol in silicalite, but little to no heating of benzene in silicalite. Effective translational and rotational temperatures extracted from QENS data under microwave heating were found to depend on microwave power. In agreement with simulation, QENS rotational temperatures significantly exceed translational ones at high microwave power, thus providing the first microscopic proof for athermal effects in microwave-driven nanopores.

3.
Phys Rev Lett ; 105(8): 085901, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20868113

RESUMO

We report quasielastic neutron scattering studies of H2-D2 diffusion in a carbon molecular sieve, demonstrating remarkable quantum effects, with the heavier isotope diffusing faster below 100 K, confirming our recent predictions. Our transition state theory and molecular dynamics calculations show that while it is critical for this effect to have narrow windows of size comparable to the de Broglie wavelength, high flux requires that the energy barrier be reduced through small cages. Such materials will enable novel processes for kinetic molecular sieving of hydrogen isotopes.

4.
J Chem Phys ; 132(14): 144507, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20406001

RESUMO

We report the quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations into diffusion of pentane isomers in zeolite NaY. The molecular cross section perpendicular to the long molecular axis varies for the three isomers while the mass and the isomer-zeolite interaction remains essentially unchanged. Both QENS and MD results show that the branched isomers neopentane and isopentane have higher self-diffusivities as compared with n-pentane at 300 K in NaY zeolite. This result provides direct experimental evidence for the existence of nonmonotonic, anomalous dependence of self-diffusivity on molecular diameter known as the levitation effect. The energetic barrier at the bottleneck derived from MD simulations exists for n-pentane which lies in the linear regime while no such barrier is seen for neopentane which is located clearly in the anomalous regime. Activation energy is in the order E(a)(n-pentane)>E(a)(isopentane)>E(a)(neopentane) consistent with the predictions of the levitation effect. In the liquid phase, it is seen that D(n-pentane)>D(isopentane)>D(neopentane) and E(a)(n-pentane)

Assuntos
Simulação de Dinâmica Molecular , Pentanos/química , Sódio/química , Ítrio/química , Zeolitas/química , Isomerismo , Difração de Nêutrons , Espalhamento de Radiação
5.
Phys Rev Lett ; 100(24): 245901, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18643600

RESUMO

Quasielastic neutron scattering measurements are combined with molecular dynamics simulations to extract the self-diffusion coefficient of hydrogen in the metal organic frameworks MIL-47(V) and MIL-53(Cr). We find that the diffusivity of hydrogen at low loading is about 2 orders of magnitude higher than in zeolites. Such a high mobility has never been experimentally observed before in any nanoporous materials, although it was predicted in carbon nanotubes. Either 1D or 3D diffusion mechanisms are elucidated depending on the chemical features of the MIL framework.

6.
J Phys Chem B ; 110(29): 14372-8, 2006 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-16854144

RESUMO

Molecular Dynamics simulations have been carried out in NaX and NaY Faujasite systems to deepen understanding of the cation rearrangement during the CO2 adsorption process suggested by our recent diffusivity measurements. This study is a major contribution since the rearrangement of the cations in Faujasite, the most promising adsorbent for CO2 storage, can represent a significant breakthrough in understanding the adsorption and diffusion processes at the mircroscopic scale. For NaY, it has been shown that at low and intermediate loadings, SII cations can migrate toward the center of the supercage due to strong interactions with the adsorbates, followed by a hopping of SI'cation from the sodalite cage into the supercage to fill the vacant SII site. The SI cations are only displaced at a higher loading, leading to cation de-trapping out of the double six rings into the vacant SI' sites. For NaX, the SIII' cations which occupy the most accessible adsorption sites move significantly upon coordination to the carbon dioxide molecules. The SI' and SII cations remain consistently located in their initial sites whatever the loading. Indeed, the most probable migration mechanism involves SIII' cation displacements into nearby vacant SIII' sites.

7.
J Phys Chem B ; 110(5): 2195-201, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16471804

RESUMO

Quasi-Elastic Neutron Scattering (QENS) experiments were carried out to determine (a) Fick diffusivity, D (b) self-diffusivity, Dself, and (c) 1/Gamma, the inverse of the thermodynamic correction factor, for n-hexane (nC6) and n-heptane (nC7) in MFI zeolite (all silica silicalite-1) at 300 K for a variety of loadings. These experimental results are compared with configurational-bias Monte Carlo (CBMC) and molecular dynamics (MD) simulations of, respectively, the adsorption isotherms and diffusivities. For n-hexane, the CBMC simulated isotherm shows a slight inflection at a loading=4 molecules per unit cell; this inflection manifests, also, in the loading dependence of 1/Gamma, obtained from QENS. The trend in the loading dependence of the Fick D and Dself of nC6 obtained from QENS matches the MD simulation results. For nC7 the CBMC simulated isotherm shows a strong inflection at a loading=4 molecules per unit cell. At this loading=4, 1/Gamma tends to zero and there is a very good match between QENS and molecular simulations for the loading dependence of 1/Gamma. Both MD simulations and QENS data on the Fick diffusivity shows a sharp maximum at a loading in the region of=4. For both nC6 and nC7 the simulated values of diffusivity are about an order of magnitude higher than those determined from QENS.

8.
Eur Phys J E Soft Matter ; 12(1): 57-61, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15007680

RESUMO

The translational and rotational dynamics of n-hexane adsorbed in ZSM-5 and 5A zeolites has been studied by neutron scattering and deuterium solid-state NMR, at various temperatures. The dynamics of n-hexane is quite different in the two zeolites. In the ZSM-5 structure, the molecule sits in channel segments, the energy barrier between adjacent adsorption sites is small and fast anisotropic motions are observed. In the 5A zeolite, the molecule is adsorbed in alpha-cages; the barrier between adjacent cages is larger so that the molecule spends a longer time exploring the volume of an alpha-cage, leading to a more isotropic motion. The diffusion coefficient of the molecule is reduced by more than 4 orders of magnitude in 5A zeolite compared with ZSM-5.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 57(7): 1393-403, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11446695

RESUMO

Inelastic neutron scattering (INS) as well as infrared (IR) transmission and diffuse reflection infrared Fourier transform (DRIFT) spectra of furan adsorbed on Li-LSX, NaY, NaX, K-LSX, and CsNaX zeolites have been measured in the range 2000-200 and 4000-1300 cm(-1), respectively. On the basis of an assignment of normal modes of furan taken from the literature and our own quantum chemical calculations of vibrational frequencies, the observed frequency shifts between bulk furan and furan adsorbed on the zeolites mentioned above have been interpreted in view of the interactions between furan and zeolite. For an explanation of frequency shifts of CH out-of-plane bendings, CH stretchings and some ring vibrations, it has to be assumed that in addition to the interaction between furan and the corresponding cation of the zeolite, a further interaction between the CH bonds and lattice oxygen atoms exists.


Assuntos
Furanos/química , Espectrofotometria Infravermelho , Zeolitas/química , Adsorção , Nêutrons , Espalhamento de Radiação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Vibração
10.
Artigo em Inglês | MEDLINE | ID: mdl-11969654

RESUMO

Scattering functions and full widths at half maximum for quasielastic neutron scattering (QENS) are calculated for diffusion in systems of one-dimensional channels. The self-correlation function for diffusion in isotropically oriented channels is given and it is found that this function diverges at the origin. The calculations are carried out for both normal and single-file diffusion and the influence of the ballistic phase is investigated. It is found that the ballistic phase influences the scattering functions very strongly for large diffusion coefficients. QENS data from the literature are analyzed with respect to this influence. The influence of three different resolution functions (triangular, Gaussian, and Lorentzian) is considered.

11.
Eur Biophys J ; 19(6): 323-6, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-1915158

RESUMO

The low-temperature neutron inelastic spectrum of guanine has been measured. In order to assign the intense peaks observed in this spectrum, a normal mode analysis has been performed, using the Wilson GF-method. The theoretical treatment is based on a non-redundant set of internal coordinates, and a simplified valence force-field approximation. Only the fundamentals have been considered for simulating the internal vibrational mode spectrum. The calculations account for the spectral shape as well as the main observed peaks.


Assuntos
Guanina/química , Nêutrons , Conformação de Ácido Nucleico , Espalhamento de Radiação , Espectrofotometria Infravermelho , Análise Espectral Raman , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...