Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22271521

RESUMO

Using a combination of data from routine surveillance, genomic sequencing, and phylogeographic analysis we tracked the spread and introduction events of SARS-CoV-2 variants focusing on a large university community. Here, we sequenced and analyzed 677 high-quality SARS-CoV-2 genomes from positive RNA samples collected from Purdue University students, faculty, and staff who tested positive for the virus between January 2021 and May 2021, comprising an average of 32% of weekly cases across the time frame. Our analysis of circulating SARS-CoV-2 variants over time revealed periods when Variant of Concern (VOC) Alpha (B.1.1.7) and Iota (B.1.526) reached rapid dominance and documented that VOC Gamma (P.1) was increasing in frequency as campus surveillance was ending. Phylodynamic analysis of Gamma genomes from campus alongside a subsampling of >20,000 previously published P.1 genomes revealed ten independent introductions of this variant into the Purdue community, predominantly from elsewhere in the United States, with introductions from within the state of Indiana and from Illinois, and possibly Washington and New York, suggesting a degree of domestic spread. We conclude that a robust and sustained active and passive surveillance program coupled with genomic sequencing during a pandemic offers important insights into the dynamics of pathogen arrival and spread in a campus community and can help guide mitigation measures.

2.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-758781

RESUMO

Rotavirus (RV)-infected piglets are presumed to be latent sources of heterologous RV infection in humans and other animals. In RVs, non-structural protein 4 (NSP4) is the major virulence factor with pleiotropic properties. In this study, we analyzed the nsp4 gene from porcine RVs isolated from diarrheic and non-diarrheic cases at different levels of protein folding to explore correlations to diarrhea-inducing capabilities and evolution of nsp4 in the porcine population. Full-length nsp4 genes were amplified, cloned, sequenced, and then analyzed for antigenic epitopes, RotaC classification, homology, genetic relationship, modeling of NSP4 protein, and prediction of post-translational modification. RV presence was observed in both diarrheic and non-diarrheic piglets. All nsp4 genes possessed the E1 genotype. Comparison of primary, secondary, and tertiary structure and the prediction of post-translational modifications of NSP4 from diarrheic and non-diarrheic piglets revealed no apparent differences. Sequence analysis indicated that nsp4 genes have a multi-phyletic evolutionary origin and exhibit species independent genetic diversity. The results emphasize the evolution of the E9 nsp4 genotype from the E1 genotype and suggest that the diarrhea-inducing capability of porcine RVs may not be exclusively linked to its enterotoxin gene.


Assuntos
Animais , Humanos , Classificação , Células Clonais , Enterotoxinas , Epitopos , Variação Genética , Genótipo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Rotavirus , Análise de Sequência , Proteínas não Estruturais Virais , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...