Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 212: 116635, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32105884

RESUMO

Investigating context-dependent modulations of Functional Connectivity (FC) with functional magnetic resonance imaging is crucial to reveal the neurological underpinnings of cognitive processing. Most current analysis methods hypothesise sustained FC within the duration of a task, but this assumption has been shown too limiting by recent imaging studies. While several methods have been proposed to study functional dynamics during rest, task-based studies are yet to fully disentangle network modulations. Here, we propose a seed-based method to probe task-dependent modulations of brain activity by revealing Psychophysiological Interactions of Co-activation Patterns (PPI-CAPs). This point process-based approach temporally decomposes task-modulated connectivity into dynamic building blocks which cannot be captured by current methods, such as PPI or Dynamic Causal Modelling. Additionally, it identifies the occurrence of co-activation patterns at single frame resolution as opposed to window-based methods. In a naturalistic setting where participants watched a TV program, we retrieved several patterns of co-activation with a posterior cingulate cortex seed whose occurrence rates and polarity varied depending on the context; on the seed activity; or on an interaction between the two. Moreover, our method exposed the consistency in effective connectivity patterns across subjects and time, allowing us to uncover links between PPI-CAPs and specific stimuli contained in the video. Our study reveals that explicitly tracking connectivity pattern transients is paramount to advance our understanding of how different brain areas dynamically communicate when presented with a set of cues.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Cognição/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Vias Neurais/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Neurológicos , Psicofisiologia , Adulto Jovem
2.
Neuroimage ; 216: 116571, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987996

RESUMO

Naturalistic movie paradigms are exquisitely dynamic by nature, yet dedicated analytical methods typically remain static. Here, we deployed a dynamic inter-subject functional correlation (ISFC) analysis to study movie-driven functional brain changes in a population of male young adults diagnosed with autism spectrum disorder (ASD). We took inspiration from the resting-state research field in generating a set of whole-brain ISFC states expressed by the analysed ASD and typically developing (TD) subjects along time. Change points of state expression often involved transitions between different scenes of the movie, resulting in the reorganisation of whole-brain ISFC patterns to recruit different functional networks. Both subject populations showed idiosyncratic state expression at dedicated time points, but only TD subjects were also characterised by episodes of homogeneous recruitment. The temporal fluctuations in both quantities, as well as in cross-population dissimilarity, were tied to contextual movie cues. The prominent idiosyncrasy seen in ASD subjects was linked to individual symptomatology by partial least squares analysis, as different temporal sequences of ISFC states were expressed by subjects suffering from social and verbal communication impairments, as opposed to nonverbal communication deficits and stereotypic behaviours. Furthermore, the temporal expression of several of these states was correlated with the movie context, the presence of faces on screen, or overall luminosity. Overall, our results support the use of dynamic analytical frameworks to fully exploit the information obtained by naturalistic stimulation paradigms. They also show that autism should be understood as a multi-faceted disorder, in which the functional brain alterations seen in a given subject will vary as a function of the extent and balance of expressed symptoms.


Assuntos
Percepção Auditiva/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Córtex Cerebral/fisiopatologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Filmes Cinematográficos , Percepção Social , Percepção Visual/fisiologia , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Humanos , Masculino , Adulto Jovem
3.
J Vis Exp ; (145)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30958480

RESUMO

Task-based functional magnetic resonance imaging bears great potential to understand how our brain reacts to various types of stimulation; however, this is often achieved without considering the dynamic facet of functional processing, and analytical outputs typically account for merged influences of task-driven effects and underlying spontaneous fluctuations of brain activity. Here, we introduce a novel methodological pipeline that can go beyond these limitations: the use of a sliding-window analytical scheme permits tracking of functional changes over time, and through cross-subject correlational measurements, the approach can isolate purely stimulus-related effects. Thanks to a rigorous thresholding process, significant changes in inter-subject functional correlation can be extracted and analyzed. On a set of healthy subjects who underwent naturalistic audio-visual stimulation, we demonstrate the usefulness of the approach by tying the unraveled functional reconfigurations to particular cues of the movie. We show how, through our method, one can capture either a temporal profile of brain activity (the evolution of a given connection), or focus on a spatial snapshot at a key time point. We provide a publicly available version of the whole pipeline, and describe its use and the influence of its key parameters step by step.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Estimulação Acústica , Adulto , Encéfalo/diagnóstico por imagem , Compreensão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Estimulação Luminosa
4.
Hum Brain Mapp ; 39(6): 2391-2404, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29504186

RESUMO

To refine our understanding of autism spectrum disorders (ASD), studies of the brain in dynamic, multimodal and ecological experimental settings are required. One way to achieve this is to compare the neural responses of ASD and typically developing (TD) individuals when viewing a naturalistic movie, but the temporal complexity of the stimulus hampers this task, and the presence of intrinsic functional connectivity (FC) may overshadow movie-driven fluctuations. Here, we detected inter-subject functional correlation (ISFC) transients to disentangle movie-induced functional changes from underlying resting-state activity while probing FC dynamically. When considering the number of significant ISFC excursions triggered by the movie across the brain, connections between remote functional modules were more heterogeneously engaged in the ASD population. Dynamically tracking the temporal profiles of those ISFC changes and tying them to specific movie subparts, this idiosyncrasy in ASD responses was then shown to involve functional integration and segregation mechanisms such as response inhibition, background suppression, or multisensory integration, while low-level visual processing was spared. Through the application of a new framework for the study of dynamic experimental paradigms, our results reveal a temporally localized idiosyncrasy in ASD responses, specific to short-lived episodes of long-range functional interplays.


Assuntos
Transtorno do Espectro Autista/patologia , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Compreensão/fisiologia , Filmes Cinematográficos , Adolescente , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Fatores de Tempo , Adulto Jovem
5.
Front Hum Neurosci ; 9: 171, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25870556

RESUMO

Subjects with autism often show language difficulties, but it is unclear how they relate to neurophysiological anomalies of cortical speech processing. We used combined EEG and fMRI in 13 subjects with autism and 13 control participants and show that in autism, gamma and theta cortical activity do not engage synergistically in response to speech. Theta activity in left auditory cortex fails to track speech modulations, and to down-regulate gamma oscillations in the group with autism. This deficit predicts the severity of both verbal impairment and autism symptoms in the affected sample. Finally, we found that oscillation-based connectivity between auditory and other language cortices is altered in autism. These results suggest that the verbal disorder in autism could be associated with an altered balance of slow and fast auditory oscillations, and that this anomaly could compromise the mapping between sensory input and higher-level cognitive representations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...