Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 61(6): 2686-2696, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34048230

RESUMO

In chemical kinetics research, kinetic models containing hundreds of species and tens of thousands of elementary reactions are commonly used to understand and predict the behavior of reactive chemical systems. Reaction Mechanism Generator (RMG) is a software suite developed to automatically generate such models by incorporating and extrapolating from a database of known thermochemical and kinetic parameters. Here, we present the recent version 3 release of RMG and highlight improvements since the previously published description of RMG v1.0. Most notably, RMG can now generate heterogeneous catalysis models in addition to the previously available gas- and liquid-phase capabilities. For model analysis, new methods for local and global uncertainty analysis have been implemented to supplement first-order sensitivity analysis. The RMG database of thermochemical and kinetic parameters has been significantly expanded to cover more types of chemistry. The present release includes parallelization for faster model generation and a new molecule isomorphism approach to improve computational performance. RMG has also been updated to use Python 3, ensuring compatibility with the latest cheminformatics and machine learning packages. Overall, RMG v3.0 includes many changes which improve the accuracy of the generated chemical mechanisms and allow for exploration of a wider range of chemical systems.


Assuntos
Quimioinformática , Software , Cinética , Aprendizado de Máquina
2.
Phys Rev E ; 95(6-1): 063113, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709211

RESUMO

The present interdisciplinary study combines electromagnetics and combustion to unveil an original and basic experiment displaying a spontaneous flame instability that is mitigated as the non-premixed sooting flame experiences a magnetic perturbation. This magnetic instability mitigation is reproduced by direct numerical simulations to be further elucidated by a flow stability analysis. A key role in the stabilization process is attributed to the momentum and thermochemistry coupling that the magnetic force, acting mainly on paramagnetic oxygen, contributes to sustain. The spatial local stability analysis based on the numerical simulations shows that the magnetic field tends to reduce the growth rates of small flame perturbations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...