Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 74: 105581, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33975188

RESUMO

In this paper, the ultrasonic-assisted desilication technique was reported as an attractive and efficient way for the preparation of hierarchical zeolites with MFI structure type. The prepared materials were used as active catalysts for the dehydration of ethanol into diethyl ether and ethylene. For all catalysts, the selectivity to diethyl ether was ca 95% or higher up to 210 °C, with catalytic activity in the range of 40-68%. In case of desilicated zeolites, at 270-290 °C, the conversion of ethanol was full with selectivity to ethylene ca 80%. MFI-type commercial zeolite was treated with a sodium and/or tetrabutylammonium hydroxide aqueous solutions (NaOH or NaOH/TBAOH) for 30 min. In the case of the application of ultrasounds, a QSonica Q700 sonicator (60 W and 20 kHz) equipped with a "1" diameter horn was used. In all cases, desilication was performed in an ice bath in order to keep the procedure conditions at low temperature. It was indicated that the use of ultrasounds during desilication procedure caused higher extraction of silicon and aluminum, which was connected with an elevated mesoporosity in relation to the samples modified in the absence of ultrasounds. Ultrasonic-assisted treatment of MFI-type zeolite caused also an apparent formation of numerous holes inside zeolite grains, resembling the look of "swiss cheese". Furthermore, it was indicated that the samples prepared using ultrasonic irradiation exhibited enhanced catalytic properties in the dehydration of ethanol. For instance, MFI-type zeolite treated with NaOH/TBAOH alkaline mixture containing 10 mol% of TBAOH in the presence of ultrasounds (M-10 s) demonstrated higher both conversion of ethanol (59% vs. 47%) and selectivity to diethyl ether (95% vs. 93%) in comparison with zeolite modified conventionally (M-10c). The best catalyst was zeolite ultrasonically desilicated with NaOH/TBAOH solution of 70 mol% of TBAOH (M-70s). Generally, this catalyst indicated the highest conversion of ethanol, very high selectivity to diethyl ether (94-100%) at 150-210  °C and the highest selectivity to ethylene among investigated catalysts (21%, 66% and 84%) at 230  °C, 250 oC and 270  °C.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118060, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-31955123

RESUMO

The objective of our study was to develop and optimize the in situ synthesis of zeolitic thin coatings with USY (ultrastabilised form of faujasite) and MFI (Model Five) type structure on metallic structured catalysts supports using the hydrothermal method. Thus, obtained zeolitic materials were studied in terms of their prospective activity in selective catalytic reduction of nitrogen oxides (SCR of NOx) with ammonia. Optimization of the preparation method consisted of several steps including: the pretreatment of steel carrier to obtain an adhesive surface, hydrothermal synthesis of zeolites at different conditions and adjustment of the zeolite structure type (MFI vs. USY). As a result, uniform zeolitic layers were deposited on steel supports. Prepared structured supports were ion-exchanged with copper or cobalt precursors to obtain active catalysts and then characterised by various physicochemical methods with a particular reference to the in situ Fourier-Transform Infrared Spectroscopy (FTIR), Ultraviolet-Visible Diffusion Reflectance Spectroscopy (DRS-UV/VIS) and Raman spectroscopy. For CuUSY sample, slightly better catalytic properties are related to higher copper content. In the case of Co-samples, worse catalytic properties in comparison with Cu counterparts might imply from higher concentration of Brønsted acid sites, lower cobalt loading (thus concentration of Lewis acid sites) and the presence of cobalt cation significantly in oxide form (evidenced by Raman, DRS-UV/VIS spectroscopy and by in situ FT-IR sorption studies).

3.
Ultrason Sonochem ; 60: 104785, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31539732

RESUMO

In this study, the sonochemical-assisted desilication method was applied as a special and innovative way of preparing hierarchical zeolites. The physicochemical properties of the hierarchical zeolites prepared using the sonochemical route were compared with those prepared using the conventional desilication method. Commercial zeolite with FAU-type structure was desilicated with a sodium and tetrabutylammonium hydroxide aqueous solution (NaOH/TBAOH) for 30 min. The ultrasound treatment process was performed using a QSonica Q700 sonicator (Church Hill Rd, Newtown, CT, USA) equipped with a ½â€³ diameter horn. The average power of sonication was 60 W, and the frequency was 20 kHz. During the sonication procedure, the alkaline solution with the catalyst precursor and sonicator probe were placed in an ice bath to keep them at room temperature. The prepared catalyst samples were examined by ICP-OES, XRD, SEM, NMR, and nitrogen sorption techniques. The acidic properties of the prepared hierarchical zeolite samples were assessed by means of IR spectroscopy with ammonia and carbon monoxide sorption as probe molecules. All catalysts were studied in the decarbonylation of furfural into furan. Independently of the application of ultrasonic irradiation, desilication of zeolites with an NaOH/TBAOH mixture extracts comparable amounts of silicon, resulting in comparable crystallinity and acidity. On the other hand, the samples prepared in the presence of ultrasounds revealed higher both mesoporosity and enhanced catalytic properties in the reaction of decarbonylation of furfural into furan in comparison with their counterparts prepared using the conventional method.

4.
Appl Radiat Isot ; 155: 108921, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31629294

RESUMO

An internal consistency test of the calculation of coincidence-summing correction factors FC for volume sources is presented. The test is based on exact equations relating the values of FC calculated for three ideal measurement configurations. The test is applied to a number of 33 sets of FC values sent by 21 teams. Most sets passed the test, but not the results obtained using the quasi-point source approximation; in the latter case the test qualitatively indicated the magnitude of the bias of FC.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 131: 696-701, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24913565

RESUMO

The study deals with the XPS, Raman and EDX characterization of a series of structured catalysts composed of cobalt oxides promoted by palladium and cerium oxides. The aim of the work was to relate the information gathered from spectroscopic analyses with the ones from kinetic tests of methane combustion to establish the basic structure-activity relationships for the catalysts studied. The most active catalyst was the cobalt oxide doped with little amount of palladium and wins a confrontation with pure palladium oxide catalyst which is commercially used in converters for methane. The analyses Raman and XPS analyses showed that this catalyst is composed of a cobalt spinel and palladium oxide. The quantitative approach to the composition of the catalysts by XPS and EDX methods revealed that the surface of palladium doped cobalt catalyst is enriched with palladium oxide which provides a great number of active centres for methane combustion indicated by kinetic parameters.


Assuntos
Cério/química , Cobalto/química , Metano/química , Óxidos/química , Paládio/química , Catálise , Espectroscopia Fotoeletrônica , Espectrometria por Raios X , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...