Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(24): 31247-31253, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38844450

RESUMO

As Coulomb drag near charge neutrality (CN) is driven by fluctuations or inhomogeneity in charge density, the topology should play an extremely important role. Interlinking Coulomb drag and topology could reveal how the system's nontrivial topology influences the electron-electron interactions at the quantum level. However, such an aspect is overlooked as most studies focus on symmetric drag systems without topology. To understand this topological aspect, we need to study Coulomb drag in an asymmetric system with a broken inversion symmetry and strong spin-orbit coupling (SOC). Here we experimentally demonstrate the energy-driven Coulomb drag in an asymmetric van der Waals heterostructure composed of black phosphorus and rhenium disulfide characterized by broken inversion symmetry. Temperature-dependent transport measurements near CN provide compelling evidence for the energy-driven Coulomb drag due to electron-hole coupling that is energetically favored in a broken-gap heterojunction, as confirmed by Hall coefficient sign reversal with temperature. Moreover, contrary to the symmetric devices, our results exhibit magnetic-field-free, i.e., topology-driven, Hall drag, revealing an intrinsic coupling between energy and charge modes. This is the manifestation of nonzero Berry curvature, akin to a magnetic field in momentum space, in a Rashba system, which arises from the SOC and broken inversion symmetry of the heterostructure.

2.
Small ; : e2402604, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898739

RESUMO

Dzyaloshinskii-Moriya interaction (DMI) is shown to induce a topologically protected chiral spin texture in magnetic/nonmagnetic heterostructures. In the context of van der Waals spintronic devices, graphene emerges as an excellent candidate material. However, due to its negligible spin-orbit interaction, inducing DMI to stabilize topological spins when coupled to 3d-ferromagnets remains challenging. Here, it is demonstrated that, despite these challenges, a sizeable Rashba-type spin splitting followed by significant DMI is induced in graphene/Fe3GeTe2. This is made possible due to an interfacial electric field driven by charge asymmetry together with the broken inversion symmetry of the heterostructure. These findings reveal that the enhanced DMI energy parameter, resulting from a large effective electron mass in Fe3GeTe2, remarkably contributes to stabilizing non-collinear spins below the Curie temperature, overcoming the magnetic anisotropy energy. These results are supported by the topological Hall effect, which coexists with the non-trivial breakdown of Fermi liquid behavior, confirming the interplay between spins and non-trivial topology. This work paves the way toward the design and control of interface-driven skyrmion-based devices.

3.
Phys Chem Chem Phys ; 23(47): 26806-26812, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34817482

RESUMO

2-Dimensional (2D) semiconducting materials are attractive candidates for future electronic device applications due to the tunable bandgap, transparency, flexibility, and downscaling to the atomic level in material size and thickness. However, 2D materials have critical issues regarding van der Waals contact, interface instability and power consumption. In particular, the development of semiconducting electronics based on 2D materials is significantly hindered by a low charge-carrier mobility. In order to improve the critical shortcoming, diverse efforts have been made in synthesis and device engineering. Here, we propose a synthesis method of single crystalline 2D Bi2S3 by chemical vapor deposition for high performance electronic device applications. The ion-gel gated field effect transistor with the as-grown Bi2S3 on the SiO2 substrate exhibits a high mobility of 100.4 cm2 V-1 S-1 and an on-off current ratio of 104 under a low gate voltage below 4 V at room temperature without chemical doping and surface engineering. The superior performance is attributed to the high crystal quality of Bi2S3 that shows low sulfur vacancies and atomic ratio close to the ideal value (2 : 3) under a rich sulfur growth process using H2S gas instead of sulfur powder. The synthesis method will provide a platform to realize high performance electronics and optoelectronics based on 2D semiconductors.

6.
Nano Lett ; 20(5): 3978-3985, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32330042

RESUMO

The recent discovery of magnetic van der Waals (vdW) materials provides a platform to answer fundamental questions on the two-dimensional (2D) limit of magnetic phenomena and applications. An important question in magnetism is the ultimate limit of the antiferromagnetic layer thickness in ferromagnetic (FM)/antiferromagnetic (AFM) heterostructures to observe the exchange bias (EB) effect, of which origin has been subject to a long-standing debate. Here, we report that the EB effect is maintained down to the atomic bilayer of AFM in the FM (Fe3GeTe2)/AFM (CrPS4) vdW heterostructure, but it vanishes at the single-layer limit. Given that CrPS4 is of A-type AFM and, thus, the bilayer is the smallest unit to form an AFM, this result clearly demonstrates the 2D limit of EB; only one unit of AFM ordering is sufficient for a finite EB effect. Moreover, the semiconducting property of AFM CrPS4 allows us to electrically control the exchange bias, providing an energy-efficient knob for spintronic devices.

7.
Adv Mater ; 30(25): e1706480, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29709083

RESUMO

Increasing the mechanical durability of large-area polycrystalline single-atom-thick materials is a necessary step toward the development of practical and reliable soft electronics based on these materials. Here, it is shown that the surface assembly of organosilane by weak epitaxy forms nanometer-thick organic patches on a monolayer graphene surface and dramatically increases the material's resistance to harsh postprocessing environments, thereby increasing the number of ways in which graphene can be processed. The nanopatched graphene with the improved mechanical durability enables stable operation when used as transparent electrodes of wearable strain sensors. Also, the nanopatched graphene applied as an electrode modulates the molecular orientation of deposited organic semiconductor layers, and yields favorable nominal charge injection for organic transistors. These results demonstrate the potential for use of self-assembled organic nanopatches in graphene-based soft electronics.

8.
J Phys Condens Matter ; 29(40): 405801, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28722687

RESUMO

We performed first-principles calculations to investigate the magnetic, mechanical and electronic properties of the tetrachalcogenide CrPS4. Although bulk CrPS4 has been shown to exhibit a low-dimensional antiferromagnetic (AFM) ground state where ferromagnetic (FM) Cr-chains are coupled antiferromagnetically, our calculations indicated that the monolayer can be transformed to an FM material by applying a uniaxial tensile strain of ⩾4% along the FM Cr-chain direction. The AFM-to-FM transition is explained to be driven by an increase of the exchange interaction induced by a decrease in the distance between the FM Cr-chains. A huge nonlinear piezomagnetism was predicted at the strain-induced magnetic phase boundary. Our study provides insight about rational design of single-layer magnetic materials for a wide range of spintronic devices and energy applications.

9.
Chem Commun (Camb) ; 46(31): 5656-8, 2010 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20526502

RESUMO

We demonstrate that gold nanoparticles can become catalytically active for the electrochemical hydrogen oxidation reaction by a sonication treatment. Experimental data and theoretical calculations indicate that the activity arises from the supercooled molten state of gold nanoparticles which are enriched with coordinatively unsaturated gold atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...