Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012563

RESUMO

The ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing these characteristics. This limitation compromises the accuracy of models in replicating cartilage function and impacts predictive capabilities. To address this, methods revealing cartilage function at the constituent-specific level are essential. In this study, we demonstrated that computational modeling derived individual constituent-specific biomechanical properties could be predicted by a novel nanoparticle contrast-enhanced computer tomography (CECT) method. We imaged articular cartilage samples collected from the equine stifle joint (n = 60) using contrast-enhanced micro-computed tomography (µCECT) to determine contrast agents' intake within the samples, and compared those to cartilage functional properties, derived from a fibril-reinforced poroelastic finite element model. Two distinct imaging techniques were investigated: conventional energy-integrating µCECT employing a cationic tantalum oxide nanoparticle (Ta2O5-cNP) contrast agent and novel photon-counting µCECT utilizing a dual-contrast agent, comprising Ta2O5-cNP and neutral iodixanol. The results demonstrate the capacity to evaluate fibrillar and non-fibrillar functionality of cartilage, along with permeability-affected fluid flow in cartilage. This finding indicates the feasibility of incorporating these specific functional properties into biomechanical computational models, holding potential for personalized approaches to cartilage diagnostics and treatment.

2.
Nat Rev Rheumatol ; 20(7): 432-451, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858605

RESUMO

Joint kinematic instability, arising from congenital or acquired musculoskeletal pathoanatomy or from imbalances in anabolism and catabolism induced by pathophysiological factors, leads to deterioration of the composition, structure and function of cartilage and, ultimately, progression to osteoarthritis (OA). Alongside articular cartilage degeneration, synovial fluid lubricity decreases in OA owing to a reduction in the concentration and molecular weight of hyaluronic acid and surface-active mucinous glycoproteins that form a lubricating film over the articulating joint surfaces. Minimizing friction between articulating joint surfaces by lubrication is fundamental for decreasing hyaline cartilage wear and for maintaining the function of synovial joints. Augmentation with highly viscous supplements (that is, viscosupplementation) offers one approach to re-establishing the rheological and tribological properties of synovial fluid in OA. However, this approach has varied clinical outcomes owing to limited intra-articular residence time and ineffective mechanisms of chondroprotection. This Review discusses normal hyaline cartilage function and lubrication and examines the advantages and disadvantages of various strategies for restoring normal joint lubrication. These strategies include contemporary viscosupplements that contain antioxidants, anti-inflammatory drugs or platelet-rich plasma and new synthetic synovial fluid additives and cartilage matrix enhancers. Advanced biomimetic tribosupplements offer promise for mitigating cartilage wear, restoring joint function and, ultimately, improving patient care.


Assuntos
Osteoartrite , Viscossuplementação , Humanos , Viscossuplementação/métodos , Osteoartrite/tratamento farmacológico , Ácido Hialurônico/uso terapêutico , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Viscossuplementos/uso terapêutico , Viscossuplementos/administração & dosagem , Líquido Sinovial/metabolismo , Suplementos Nutricionais
3.
J Orthop Res ; 42(2): 415-424, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37593815

RESUMO

Cartilage and synovial fluid are challenging to observe separately in native computed tomography (CT). We report the use of triple contrast agent (bismuth nanoparticles [BiNPs], CA4+, and gadoteridol) to image and segment cartilage in cadaveric knee joints with a clinical CT scanner. We hypothesize that BiNPs will remain in synovial fluid while the CA4+ and gadoteridol will diffuse into cartilage, allowing (1) segmentation of cartilage, and (2) evaluation of cartilage biomechanical properties based on contrast agent concentrations. To investigate these hypotheses, triple contrast agent was injected into both knee joints of a cadaver (N = 1), imaged with a clinical CT at multiple timepoints during the contrast agent diffusion. Knee joints were extracted, imaged with micro-CT (µCT), and biomechanical properties of the cartilage surface were determined by stress-relaxation mapping. Cartilage was segmented and contrast agent concentrations (CA4+ and gadoteridol) were compared with the biomechanical properties at multiple locations (n = 185). Spearman's correlation between cartilage thickness from clinical CT and reference µCT images verifies successful and reliable segmentation. CA4+ concentration is significantly higher in femoral than in tibial cartilage at 60 min and further timepoints, which corresponds to the higher Young's modulus observed in femoral cartilage. In this pilot study, we show that (1) large BiNPs do not diffuse into cartilage, facilitating straightforward segmentation of human knee joint cartilage in a clinical setting, and (2) CA4+ concentration in cartilage reflects the biomechanical differences between femoral and tibial cartilage. Thus, the triple contrast agent CT shows potential in cartilage morphology and condition estimation in clinical CT.


Assuntos
Cartilagem Articular , Meios de Contraste , Humanos , Estudo de Prova de Conceito , Projetos Piloto , Tomografia Computadorizada por Raios X/métodos , Articulação do Joelho/diagnóstico por imagem
4.
Osteoarthritis Cartilage ; 32(3): 299-309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38061579

RESUMO

OBJECTIVE: Cationic tantalum oxide nanoparticles (Ta2O5-cNPs), as a newly introduced contrast agent for computed tomography of cartilage, offer quantitative evaluation of proteoglycan (PG) content and biomechanical properties. However, knowledge on the depth-wise impact of cartilage constituents on nanoparticle diffusion, particularly the influence of the collagen network, is lacking. In this study, we aim to establish the depth-dependent relationship between Ta2O5-cNP diffusion and cartilage constituents (PG content, collagen content and network architecture). METHODS: Osteochondral samples (n = 30) were harvested from healthy equine stifle joints (N = 15) and the diffusion of 2.55 nm diameter cationic Ta2O5-cNPs into the cartilage was followed with micro computed tomography (µCT) imaging for up to 96 hours. The diffusion-related parameters, Ta2O5-cNP maximum partition (Pmax) and diffusion time constant, were compared against biomechanical and depth-wise structural properties. Biomechanics were assessed using stress-relaxation and sinusoidal loading protocols, whereas PG content, collagen content and collagen network architecture were determined using digital densitometry, Fourier-transform infrared spectroscopy and polarized light microscopy, respectively. RESULTS: The Pmax correlates with the depth-wise distribution of PGs (bulk Spearman's ρ = 0.87, p < 0.001). More open collagen network architecture at the superficial zone enhances intake of Ta2O5-cNPs, but collagen content overall decreases the intake. The Pmax values correlate with the equilibrium modulus (ρ = 0.80, p < 0.001) of articular cartilage. CONCLUSION: This study establishes the feasibility of Ta2O5-cNPs for the precise and comprehensive identification of biomechanical and structural changes in articular cartilage via contrast-enhanced µCT.


Assuntos
Cartilagem Articular , Óxidos , Tantálio , Animais , Cavalos , Cartilagem Articular/diagnóstico por imagem , Meios de Contraste , Microtomografia por Raio-X , Proteoglicanas , Colágeno
5.
ACS Nano ; 15(12): 19175-19184, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34882411

RESUMO

Nanoparticle-based contrast agents, when used in concert with imaging modalities such as computed tomography (CT), enhance the visualization of tissues and boundary interfaces. However, the ability to determine the physiological state of the tissue via the quantitative assessment of biochemical or biomechanical properties remains elusive. We report the synthesis and characterization of tantalum oxide (Ta2O5) nanoparticle (NP) contrast agents for rapid, nondestructive, and quantitative contrast-enhanced computed tomography (CECT) to assess both the glycosaminoglycan (GAG) content and the biomechanical integrity of human metacarpal phalangeal joint (MCPJ) articular cartilage. Ta2O5 NPs 3-6 nm in diameter and coated with either nonionic poly(ethylene) glycol (PEG) or cationic trimethylammonium ligands readily diffuse into both healthy and osteoarthritic MCPJ cartilage. The CECT attenuation for the cationic and neutral NPs correlates with the glycosaminoglycan (GAG) content (R2 = 0.8975, p < 0.05 and 0.7054, respectively) and the equilibrium modulus (R2 = 0.8285, p < 0.05 and 0.9312, p < 0.05, respectively). The results highlight the importance of the surface charge and size in the design of NP agents for targeting and imaging articular cartilage. Further, nanoparticle CECT offers the visualization of both soft tissue and underlying bone unlike plain radiography, which is the standard for imaging bone in musculoskeletal diseases, and the ability to provide a real-time quantitative assessment of both hard and soft tissues to provide a comprehensive image of the disease stage, as demonstrated herein.


Assuntos
Cartilagem Articular , Nanopartículas , Fenômenos Biomecânicos , Cartilagem Articular/diagnóstico por imagem , Meios de Contraste , Humanos , Óxidos , Tantálio , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...