Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(1-2): 015106, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797916

RESUMO

A theoretical model of thermal boundary layers and acoustic heating in microscale acoustofluidic devices is presented. Based on it, an iterative numerical model is developed that enables numerical simulation of nonlinear thermoviscous effects due to acoustic heating and thermal advection. Effective boundary conditions are derived and used to enable simulations in three dimensions. The theory shows how friction in the viscous boundary layers causes local heating of the acoustofluidic device. The resulting temperature field spawns thermoacoustic bulk streaming that dominates the traditional boundary-driven Rayleigh streaming at relatively high acoustic energy densities. The model enables simulations of microscale acoustofluidics with high acoustic energy densities and streaming velocities in a range beyond the reach of perturbation theory, and is relevant for design and fabrication of high-throughput acoustofluidic devices.

2.
Phys Rev Lett ; 130(4): 044001, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763435

RESUMO

Acoustic streaming at high acoustic energy densities E_{ac} is studied in a microfluidic channel. It is demonstrated theoretically, numerically, and experimentally with good agreement that frictional heating can alter the streaming pattern qualitatively at high E_{ac} above 400 J/m^{3}. The study shows how as a function of increasing E_{ac} at fixed frequency, the traditional boundary-driven four streaming rolls created at a half-wave standing-wave resonance transition into two large streaming rolls. This nonlinear transition occurs because friction heats up the fluid resulting in a temperature gradient, which spawns an acoustic body force in the bulk that drives thermoacoustic streaming.

3.
Phys Rev Lett ; 127(6): 064501, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420350

RESUMO

We study acoustic streaming in liquids driven by a nondissipative acoustic body force created by light-induced temperature gradients. This thermoacoustic streaming produces a velocity amplitude nearly 100 times higher than the boundary-driven Rayleigh streaming and the Rayleigh-Bénard convection at a temperature gradient of 10 K/mm in the channel. The Rayleigh streaming is altered by the acoustic body force at a temperature gradient of only 0.5 K/mm. The thermoacoustic streaming allows for modular flow control and enhanced heat transfer at the microscale. Our study provides the groundwork for studying microscale acoustic streaming coupled with temperature fields.

4.
J Acoust Soc Am ; 149(5): 3599, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34241087

RESUMO

We present an effective thermoviscous theory of acoustofluidics including pressure acoustics, thermoviscous boundary layers, and streaming for fluids embedded in elastic cavities. By including thermal fields, we thus extend the effective viscous theory by Bach and Bruus [J. Acoust. Soc. Am. 144, 766 (2018)]. The acoustic temperature field and the thermoviscous boundary layers are incorporated analytically as effective boundary conditions and time-averaged body forces on the thermoacoustic bulk fields. Because it avoids resolving the thin boundary layers, the effective model allows for numerical simulation of both thermoviscous acoustic and time-averaged fields in three-dimensional models of acoustofluidic systems. We show how the acoustic streaming depends strongly on steady and oscillating thermal fields through the temperature dependency of the material parameters, in particular the viscosity and the compressibility, affecting both the boundary conditions and spawning additional body forces in the bulk. We also show how even small steady temperature gradients ( ∼1 K/mm) induce gradients in compressibility and density that may result in very high streaming velocities ( ∼1 mm/s) for moderate acoustic energy densities ( ∼100 J/m3).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...