Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-450293

RESUMO

BackgroundAntibodies and T cells cooperate to control virus infections. The definition of the correlates of protection necessary to manage the COVID-19 pandemic, require both immune parameters but the complexity of traditional tests limits virus-specific T cell measurements. MethodsWe test the sensitivity and performance of a simple and rapid SARS-CoV-2 Spike-specific T cell test based on stimulation of whole blood with peptides covering the SARS-CoV-2 Spike protein followed by cytokine (IFN-{gamma}, IL-2) measurement in different cohorts including BNT162b2 vaccinated (n=112; 201 samples), convalescent asymptomatic (n=62; 62 samples) and symptomatic (n=68; 115 samples) COVID-19 patients and SARS-CoV-1 convalescent individuals (n=12; 12 samples). ResultsThe sensitivity of the rapid cytokine whole blood test equates traditional methods of T cell analysis (ELISPOT, Activation Induced Markers). Utilizing this test we observed that Spike-specific T cells in vaccinated preferentially target the S2 region of Spike and that their mean magnitude is similar between them and SARS-CoV-2 convalescents at 3 months after vaccine or virus priming respectively. However, a wide heterogeneity of Spike-specific T cell magnitude characterizes the individual responses irrespective of the time of analysis. No correlation between neutralizing antibody levels and Spike-specific T cell magnitude were found. ConclusionsRapid measurement of cytokine production in whole blood after peptide activation revealed a wide dynamic range of Spike-specific T cell response after vaccination that cannot be predicted from neutralizing antibody quantities. Both Spike-specific humoral and cellular immunity should be tested after vaccination to define the correlates of protection necessary to evaluate current vaccine strategies.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-399139

RESUMO

The efficacy of virus-specific T cells in clearing pathogens involves a fine balance between their antiviral and inflammatory features. SARS-CoV-2-specific T cells in individuals who clear SARS-CoV-2 infection without symptoms or disease could reveal non-pathological yet protective characteristics. We therefore compared the quantity and function of SARS-CoV-2-specific T cells in a cohort of asymptomatic individuals (n=85) with that of symptomatic COVID-19 patients (n=76), at different time points after antibody seroconversion. We quantified T cells reactive to structural proteins (M, NP and Spike) using ELISpot assays, and measured the magnitude of cytokine secretion (IL-2, IFN-{gamma}, IL-4, IL-6, IL-1{beta}, TNF- and IL-10) in whole blood following T cell activation with SARS-CoV-2 peptide pools as a functional readout. Frequencies of T cells specific for the different SARS-CoV-2 proteins in the early phases of recovery were similar between asymptomatic and symptomatic individuals. However, we detected an increased IFN-{gamma} and IL-2 production in asymptomatic compared to symptomatic individuals after activation of SARS-CoV-2-specific T cells in blood. This was associated with a proportional secretion of IL-10 and pro-inflammatory cytokines (IL-6, TNF- and IL-1{beta}) only in asymptomatic infection, while a disproportionate secretion of inflammatory cytokines was triggered by SARS-CoV-2-specific T cell activation in symptomatic individuals. Thus, asymptomatic SARS-CoV-2 infected individuals are not characterized by a weak antiviral immunity; on the contrary, they mount a robust and highly functional virus-specific cellular immune response. Their ability to induce a proportionate production of IL-10 might help to reduce inflammatory events during viral clearance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...