Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177578

RESUMO

Morphological microwave imaging has shown interesting results on reconstructing biological objects inside the human body, and these parameters represent their actual biological condition, but not their biological activity. In this paper, we propose a novel microwave technique to locate the low-frequency (f≃1 kHz) -modulated signals produced by a microtag mimicking an action potential and proved it in a cylindrical phantom of the brain region. A set of two combined UWB microwave applicators, operating in the 0.5 to 2.5 GHz frequency band and producing a nsec interrogation pulse, is able to focus its radiated field into a small region of the brain containing the microtag with a modulated photodiode. The illuminating UWB microwave field was first modulated by the low-frequency (f≃1 kHz) electrical signal produced by the photodiode, inducing modulated microwave currents into the microtag that reradiating back towards the focusing applicators. At the receiving end, the low-frequency (f≃1 kHz) -modulated signal was first extracted from the full set of the backscattered signals, then focused into the region of interest and spatially represented in the corresponding region of the brain, resulting in a spatial resolution of the images in the order of 10 mm.


Assuntos
Imageamento de Micro-Ondas , Micro-Ondas , Humanos , Diagnóstico por Imagem , Imagens de Fantasmas , Encéfalo/diagnóstico por imagem
2.
Sensors (Basel) ; 22(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408055

RESUMO

Detection of bioparticles is of great importance in electrophoresis, identification of biomass sources, food and water safety, and other areas. It requires a proper model to describe bioparticles' electromagnetic characteristics. A numerical study of Escherichia coli bacteria during their functional activity was carried out by using two different geometrical models for the cells that considered the bacteria as layered ellipsoids and layered spheres. It was concluded that during cell duplication, the change in the dielectric permittivity of the cell is high enough to be measured at radio frequencies of the order of 50 kHz. An experimental setup based on the capacitive Wheatstone bridge was designed to measure relative changes in permittivity during cell division. In this way, the theoretical model was validated by measuring the dielectric permittivity changes in a cell culture of Escherichia coli ATTC 8739 from WDCM 00012 Vitroids. The spheroidal model was confirmed to be more accurate.


Assuntos
Técnicas Biossensoriais , Infecções por Escherichia coli , Escherichia coli , Humanos , Modelos Teóricos , Ondas de Rádio
3.
Sensors (Basel) ; 21(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069045

RESUMO

The investigation of the electromagnetic properties of biological particles in microfluidic platforms may enable microwave wireless monitoring and interaction with the functional activity of microorganisms. Of high relevance are the action and membrane potentials as they are some of the most important parameters of living cells. In particular, the complex mechanisms of a cell's action potential are comparable to the dynamics of bacterial membranes, and consequently focusing on the latter provides a simplified framework for advancing the current techniques and knowledge of general bacterial dynamics. In this work, we provide a theoretical analysis and experimental results on the microwave detection of microorganisms within a microfluidic-based platform for sensing the membrane potential of bacteria. The results further advance the state of microwave bacteria sensing and microfluidic control and their implications for measuring and interacting with cells and their membrane potentials, which is of great importance for developing new biotechnologically engineered systems and solutions.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Bactérias , Potenciais da Membrana , Micro-Ondas
4.
Opt Express ; 21(10): 11943-51, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23736416

RESUMO

We demonstrate a compact, robust, and highly efficient source of polarization-entangled photons, based on linear bi-directional down-conversion in a novel 'folded sandwich' configuration. Bi-directionally pumping a single periodically poled KTiOPO(4) (ppKTP) crystal with a 405-nm laser diode, we generate entangled photon pairs at the non-degenerate wavelengths 784 nm (signal) and 839 nm (idler), and achieve an unprecedented detection rate of 11.8 kcps for 10.4 µW of pump power (1.1 million pairs / mW), in a 2.9-nm bandwidth, while maintaining a very high two-photon entanglement quality, with a Bell-state fidelity of 99.3 ± 0.3%.


Assuntos
Lasers de Estado Sólido , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Modelos Lineares , Fótons
5.
Opt Express ; 20(9): 9640-9, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22535055

RESUMO

We present a simple but highly efficient source of polarization-entangled photons based on spontaneous parametric down-conversion (SPDC) in bulk periodically poled potassium titanyl phosphate crystals (PPKTP) pumped by a 405 nm laser diode. Utilizing one of the highest available nonlinear coefficients in a non-degenerate, collinear type-0 phase-matching configuration, we generate polarization entanglement via the crossed-crystal scheme and detect 0.64 million photon pair events/s/mW, while maintaining an overlap fidelity with the ideal Bell state of 0.98 at a pump power of 0.025 mW.


Assuntos
Lasers Semicondutores , Iluminação/instrumentação , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons
6.
J Opt Soc Am A Opt Image Sci Vis ; 27(9): 1946-52, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20808401

RESUMO

We study the optical properties of a two-axis galvanometric optical scanner constituted by a pair of rotating planar mirrors, focusing our attention on the transformation induced on the polarization state of the input beam. We obtain the matrix that defines the transformation of the propagation direction of the beam and the Jones matrix that defines the transformation of the polarization state. Both matrices are expressed in terms of the rotation angles of two mirrors. Finally, we calculate the parameters of the general rotation in the Poincaré sphere that describes the change in the polarization state for each mutual orientation of the mirrors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...