Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177578

RESUMO

Morphological microwave imaging has shown interesting results on reconstructing biological objects inside the human body, and these parameters represent their actual biological condition, but not their biological activity. In this paper, we propose a novel microwave technique to locate the low-frequency (f≃1 kHz) -modulated signals produced by a microtag mimicking an action potential and proved it in a cylindrical phantom of the brain region. A set of two combined UWB microwave applicators, operating in the 0.5 to 2.5 GHz frequency band and producing a nsec interrogation pulse, is able to focus its radiated field into a small region of the brain containing the microtag with a modulated photodiode. The illuminating UWB microwave field was first modulated by the low-frequency (f≃1 kHz) electrical signal produced by the photodiode, inducing modulated microwave currents into the microtag that reradiating back towards the focusing applicators. At the receiving end, the low-frequency (f≃1 kHz) -modulated signal was first extracted from the full set of the backscattered signals, then focused into the region of interest and spatially represented in the corresponding region of the brain, resulting in a spatial resolution of the images in the order of 10 mm.


Assuntos
Imageamento de Micro-Ondas , Micro-Ondas , Humanos , Diagnóstico por Imagem , Imagens de Fantasmas , Encéfalo/diagnóstico por imagem
2.
Sensors (Basel) ; 22(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408055

RESUMO

Detection of bioparticles is of great importance in electrophoresis, identification of biomass sources, food and water safety, and other areas. It requires a proper model to describe bioparticles' electromagnetic characteristics. A numerical study of Escherichia coli bacteria during their functional activity was carried out by using two different geometrical models for the cells that considered the bacteria as layered ellipsoids and layered spheres. It was concluded that during cell duplication, the change in the dielectric permittivity of the cell is high enough to be measured at radio frequencies of the order of 50 kHz. An experimental setup based on the capacitive Wheatstone bridge was designed to measure relative changes in permittivity during cell division. In this way, the theoretical model was validated by measuring the dielectric permittivity changes in a cell culture of Escherichia coli ATTC 8739 from WDCM 00012 Vitroids. The spheroidal model was confirmed to be more accurate.


Assuntos
Técnicas Biossensoriais , Infecções por Escherichia coli , Escherichia coli , Humanos , Modelos Teóricos , Ondas de Rádio
3.
Sensors (Basel) ; 23(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36616869

RESUMO

The need for non-ionizing techniques for medical imaging applications has led to the use of microwave signals. Several systems have been introduced in recent years based on increasing the number of antennas and frequency bandwidth to obtain high resolution and good accuracy in locating objects. A novel microwave imaging system that reduces the number of required antennas for precise target location appropriate for medical applications is presented. The proposed system consists of four UWB extended gap ridge horn (EGRH) antennas covering the frequency band from 0.5 GHz to 1.5 GHz mounted on a cylindrical phantom that mimics the brain in an orthogonal set of two EGRH probes. This configuration has the ability to control both the longitudinal and transversal dimensions of the reconstructed target's image, rather than controlling the spatial resolution, by increasing the frequency band that can be easily affected by medium losses. The system is tested numerically and experimentally by the detection of a cylindrical target within a human brain model.


Assuntos
Imageamento de Micro-Ondas , Micro-Ondas , Humanos , Diagnóstico por Imagem/métodos , Imagens de Fantasmas
4.
Sensors (Basel) ; 21(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069045

RESUMO

The investigation of the electromagnetic properties of biological particles in microfluidic platforms may enable microwave wireless monitoring and interaction with the functional activity of microorganisms. Of high relevance are the action and membrane potentials as they are some of the most important parameters of living cells. In particular, the complex mechanisms of a cell's action potential are comparable to the dynamics of bacterial membranes, and consequently focusing on the latter provides a simplified framework for advancing the current techniques and knowledge of general bacterial dynamics. In this work, we provide a theoretical analysis and experimental results on the microwave detection of microorganisms within a microfluidic-based platform for sensing the membrane potential of bacteria. The results further advance the state of microwave bacteria sensing and microfluidic control and their implications for measuring and interacting with cells and their membrane potentials, which is of great importance for developing new biotechnologically engineered systems and solutions.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Bactérias , Potenciais da Membrana , Micro-Ondas
5.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917447

RESUMO

Nonlinear effects in the radio front-end can degrade communication quality and system performance. In this paper we present a new design technique for reconfigurable antennas that minimizes the nonlinear distortion and maximizes power efficiency through the minimization of the coupling between the internal switching ports and the external feeding ports. As a nonlinear design and validation instance, we present the nonlinear characterization up to 50 GHz of a PIN diode commonly used as a switch for reconfigurable devices in the microwave band. Nonlinear models are extracted through X-parameter measurements supported by accurate calibration and de-embedding procedures. Nonlinear switch models are validated by S-parameter measurements in the low power signal regime and by harmonic measurements in the large-signal regime and are further used to predict the measured nonlinearities of a reconfigurable antenna. These models have the desired particularity of being integrated straightforwardly in the internal multi-port method formulation, which is used and extended to account for the power induced on the switching elements. A new figure of merit for the design of reconfigurable antennas is introduced-the power margin, that is, the power difference between the fed port and the switching elements, which combined with the nonlinear load models directly translates into nonlinearities and power-efficiency-related metrics. Therefore, beyond traditional antenna aspects such as port match, gain, and beam orientation, switch power criteria are included in the design methodology. Guidelines for the design of reconfigurable antennas and parasitic layers of minimum nonlinearity are provided as well as the inherent trade-offs. A particular antenna design suitable for 5G communications in the 3.5 GHz band is presented according to these guidelines, in which the specific switching states for a set of target performance metrics are obtained via a balancing of the available figures of merit with multi-objective separation criteria, which enables good control of the various design trade-offs. Average Error Vector Magnitude (EVM) and power efficiency improvement of 12 and 6 dB, respectively, are obtained with the application of this design approach. In summary, this paper introduces a new framework for the nonlinear modeling and design of reconfigurable antennas and provides a set of general-purpose tools applicable in cases beyond those used as examples and validation in this work. Additionally, the use of these models and guidelines is presented, demonstrating one of the most appealing advantages of the reconfigurable parasitic layer approach, their low nonlinearity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...