Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm Res ; 37(2): 225-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23515933

RESUMO

The rhizome of Codonopsis lanceolata (family Campanulaceae), which contains lancemaside A as a main constituent, is frequently used in the traditional Chinese medicine for the treatment of inflammatory diseases. Lancemaside A exhibits anti-inflammatory effect in vitro and in vivo. However, orally administered lancemaside A is metabolized to echinocystic acid by the intestinal microflora and the metabolite is absorbed into the blood. Therefore, to understand whether echinocystic acid is effective against skin inflammatory diseases, we assessed its inhibitory effect against 12-O-tetra decanoylphorbol-13-acetate (TPA)-induced ear inflammation in mice. Topically administered echinocystic acid potently suppressed TPA-induced ear swelling. The suppression rates at 0.05 and 0.10 % concentrations were 65 and 73 %, respectively. Echinocystic acid also inhibited TPA-induced myeloperoxidase activity, as well as COX-2, iNOS, TNF-α and IL-1ß expressions. Echinocystic acid inhibited NF-κB in TPA-treated mouse ears, as well as in lipopolysaccharide-stimulated peritoneal macrophages. Its potency is comparable with that of dexamethasone. These findings indicate that echinocystic acid may ameliorate inflammatory diseases, such as dermatitis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Dermatite/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Células Cultivadas , Dermatite/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microscopia Confocal , Microscopia de Fluorescência , Estrutura Molecular , Ácido Oleanólico/administração & dosagem , Ácido Oleanólico/química , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/uso terapêutico , Saponinas/química , Espectrometria de Massas por Ionização por Electrospray
2.
Immunopharmacol Immunotoxicol ; 35(3): 396-402, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23672525

RESUMO

Lactic acid bacteria (LAB) have recently attracted considerable attention as treatment options for immune diseases, the incidence of which has been increasing worldwide. The ability of tumor necrosis factor-α producing LAB isolated from cheese to inhibit NF-κB activation in lipopolysaccharide (LPS)-stimulated peritoneal macrophages was investigated. Among the tested LAB, Lactobacillus casei HY7213 inhibited NF-κB activation most potently. Therefore, we measured its immunopotentiating effect in cyclophosphamide (CP)-immunosuppressed mice. When HY7213 was orally administered for 5 or 15 d, it reversed the CP immunosuppressant effect by increasing body and spleen weights, blood red and white blood cells levels, and splenocyte and bone marrow cells counts. Treatment with CP in mice markedly reduced concanavalin A (ConA)-induced T cell proliferation to 54% compared to the normal group. Oral administration of HY7213 in CP-immunosuppressed mice reversed that value to 95% of the normal group on day 15. Furthermore, oral administration of HY7213 to CP-treated mice significantly enhanced the expression of IL-2 and IFN-γ in ConA-induced splenic cytotoxic T cells, restored the CP-impaired phagocytosis of macrophage, and increased the cytotoxicity of natural killer (NK) and cytotoxic T cells derived from spleen and bone marrow against YAC-1. Based on these findings, we suggest that HY7213 may promote the recovery of immunosuppression caused by chemotherapeutic agents, such as CP, by activating NK cells, cytotoxic T cells and macrophages.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Ciclofosfamida/efeitos adversos , Tolerância Imunológica/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Lacticaseibacillus casei/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Linfócitos T Citotóxicos/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Tolerância Imunológica/imunologia , Células Matadoras Naturais/imunologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T Citotóxicos/imunologia
3.
J Microbiol Biotechnol ; 23(3): 414-21, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23462016

RESUMO

Lactic acid bacteria (LAB) in fermented foods have attracted considerable attention recently as treatment options for immune diseases, the incidence of which has been increasing worldwide. The ability of 500 strains of LAB, isolated from kimchi, to induce TNF--α production in peritoneal macrophages was investigated. Lactobacillus plantarum HY7712 most strongly induced TNF--α production as well as NF-κB activation. However, HY7712 inhibited NF-κB activation in LPS-stimulated peritoneal macrophages. When HY7712 was orally treated in cyclophosphamide (CP)-immunosuppressed mice for 5 or 15 days, it reversed the body and spleen weights, blood RBC and WBC levels, and splenocyte and bone marrow cells that were reduced by CP. Orally administered HY7712 increased concanavalin A-induced T cell proliferation to 84.5% of the normal group on day 15, although treatment with CP alone markedly reduced it to 53.7% of the normal group. Furthermore, orally administered HY7712 significantly induced the expressions of IL-2 and IFN-γ in ConA-induced splenic cytotoxic T cells of CP-treated mice. Orally administered HY7712 restored the CP-impaired phagocytosis of macrophages in mice. Orally administered HY7712 also restored the cytotoxicity of NK and cytotoxic T cells derived from spleen and bone marrow against YAC-1 in CP-immunosuppressed mice. Based on these findings, orally administered HY7712 may accelerate the recovery of cyclophosphamide-caused immunosuppression, without evident side effects, by immunopotentiating NK and Tc cells, and may provide a mechanistic basis for using HY7712 as an alternative means in lessening chemotherapyinduced immunosuppression in cancer patients.


Assuntos
Ciclofosfamida/administração & dosagem , Terapia de Imunossupressão , Imunossupressores/administração & dosagem , Lactobacillus plantarum/imunologia , Animais , Peso Corporal , Proliferação de Células , Citotoxicidade Imunológica , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Contagem de Leucócitos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/microbiologia , Camundongos , NF-kappa B/metabolismo , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Bioorg Med Chem ; 21(7): 2018-24, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23415083

RESUMO

Akt is activated in most human cancers and contributes to cell growth, proliferation and cellular survival pathway. Accordingly, it is an attractive target for anticancer therapy. A series of novel alkylphosphocholines, incorporating cyclopentanecarboxylate in the phospholipid head group with trans and cis orientations, were synthesized and evaluated for their Akt phosphorylation inhibitory activities and cytotoxicities against human cancer cell lines, A549, MCF-7 and KATO III. Among the synthesized compounds, 5a, 5b and 6c exhibited potent inhibitory Akt phosphorylation effects with IC50 value of 3.1, 2.0 and 3.0 µM, respectively, and their potencies were better than those of three reference compounds miltefosine, perifosine and edelfosine. All the new compounds, except 5d and 6e, displayed more potent growth inhibition against A549 cells than reference compounds. Specifically, compound 5b exhibited most remarkable cytotoxicities on A549 cells as well as MCF-7 and KATO III cells. Importantly, the cytotoxic effects of these compounds correlated with their Akt phosphorylation inhibitory activities.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilcolina/química , Fosforilcolina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antineoplásicos/síntese química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclopentanos/síntese química , Ciclopentanos/química , Ciclopentanos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Éteres Fosfolipídicos/farmacologia , Fosforilcolina/análogos & derivados , Fosforilcolina/síntese química
5.
Int Immunopharmacol ; 15(2): 433-41, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23352442

RESUMO

The rhizome of Codonopsis lanceolata (CL, family Campanulaceae), of which the main constituent is lancemaside A, has been used for cough and bronchitis in traditional Chinese medicine. To evaluate anti-colitic effect of CL, we examined anti-inflammatory effect of CL extracts, lancemaside A and its metabolites in lipopolysaccharide (LPS)-stimulated peritoneal macrophages and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitic mice. Among CL extracts, CL BuOH extract inhibited LPS-induced IL-1ß, IL-6 and TNF-α expression, as well as NF-κB activation most potently. CL BuOH extract also inhibited colon shortening and myeloperoxidase activity in TNBS-induced colitic mice. Among lancemaside A, a main constituent of CL BuOH extract, and its metabolites (lancemaside X, echinocystic acid-3-O-ß-d-glucopyranoside and echinocystic acid), echinocystic acid inhibited the expression of the pro-inflammatory cytokines, IL-1ß, IL-6, and TNF-α, as well as the phosphorylation of IKKß and p65 in LPS-stimulated peritoneal macrophages most potently. Echinocystic acid also potently inhibited the binding of LPS to TLR4 on peritoneal macrophages. Lancemaside A and its metabolite, echinocystic acid, inhibited TNBS-induced colonic inflammation, including colon shortening, increased myeloperoxidase activity and pro-inflammatory cytokine expression, and NF-κB activation in mice. The anti-colitic effect of echinocystic acid was superior to that of lancemaside A. Based on these findings, orally administered lancemaside A may be metabolized to echinocystic acid, which may express anti-colitic effect by inhibiting the binding of LPS to TLR4 on the macrophages.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Saponinas/administração & dosagem , Animais , Células Cultivadas , Codonopsis/imunologia , Colite/induzido quimicamente , Colite/imunologia , Colo/patologia , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos Peritoneais/imunologia , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Ácido Oleanólico/administração & dosagem , Ligação Proteica/efeitos dos fármacos , Rizoma , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Ácido Trinitrobenzenossulfônico/metabolismo
6.
PLoS One ; 7(11): e50424, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23189201

RESUMO

While pharmacological inhibition of Akt kinase has been regarded as a promising anti-cancer strategy, most of the Akt inhibitors that have been developed are enzymatic inhibitors that target the kinase active site of Akt. Another key cellular regulatory event for Akt activation is the translocation of Akt kinase to the cell membrane from the cytoplasm, which is accomplished through the pleckstrin homology (PH) domain of Akt. However, compounds specifically interacting with the PH domain of Akt to inhibit Akt activation are currently limited. Here we identified a compound, lancemaside A (LAN-A), which specifically binds to the PH domain of Akt kinase. First, our mass spectra analysis of cellular Akt kinase isolated from cells treated with LAN-A revealed that LAN-A specifically binds to the PH domain of cellular Akt kinase. Second, we observed that LAN-A inhibits the translocation of Akt kinase to the membrane and thus Akt activation, as examined by the phosphorylation of various downstream targets of Akt such as GSK3ß, mTOR and BAD. Third, in a co-cultured cell model containing human lung epithelial cancer cells (A549) and normal human primary lung fibroblasts, LAN-A specifically restricts the growth of the A549 cells. LAN-A also displayed anti-proliferative effects on various human cancer cell lines. Finally, in the A549-luciferase mouse transplant model, LAN-A effectively inhibited A549 cell growth with little evident cytotoxicity. Indeed, the therapeutic index of LAN-A in this mouse model was >250, supporting that LAN-A is a potential lead compound for PH domain targeting as a safe anti-cancer Akt inhibitor.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/química , Saponinas/farmacologia , Animais , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/patologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/metabolismo , Saponinas/toxicidade , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell Immunol ; 279(1): 103-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23117333

RESUMO

The stem bark of Kalopanax pictus Nakai (KP, family Araliaceae), of which main constituent is kalopanaxsaponin B, has been used for inflammation in Chinese traditional medicine. We isolated kalopanaxsaponin B from KP and investigated its anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated peritoneal macrophages and on LPS-stimulated systemic inflammation in male ICR mice. Kalopanaxsaponin B inhibited the expression of TNF-α, IL-1ß, iNOS and COX-2 in LPS-stimulated peritoneal macrophages. Kalopanaxsaponin B also inhibited the activation of IRAK1, IKK-ß, NF-κB and MAP kinases (ERK, JNK, p-38). Treatment with LPS in the presence of kalopanaxsaponin B inhibited LPS-induced IRAK1 degradation and phosphorylation. Kalopanaxsaponin B inhibited IRAK1 kinase binding activity. However, kalopanaxsaponin B did not inhibit the NF-κB activation in active IKK-ß-transfected macrophages. Kalopanaxsaponin B did not inhibit the binding of LPS on toll-like receptor-4 of the macrophages. Kalopanaxsaponin B inhibited LPS-induced systemic inflammation in mice. Based on these findings, kalopanaxsaponin B ameliorates LPS-induced systemic inflammation by inhibiting IRAK1 kinase.


Assuntos
Inflamação/prevenção & controle , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Animais , Western Blotting , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microscopia Confocal , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ácido Oleanólico/farmacologia , Interferência de RNA , Receptor 4 Toll-Like/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo
8.
PLoS One ; 7(10): e47713, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23091640

RESUMO

BACKGROUND & AIMS: While it is widely accepted that obesity is associated with low-grade systemic inflammation, the molecular origin of the inflammation remains unknown. Here, we investigated the effect of endotoxin-induced inflammation via TLR4 signaling pathway at both systemic and intestinal levels in response to a high-fat diet. METHODS: C57BL/6J and TLR4-deficient C57BL/10ScNJ mice were maintained on a low-fat (10 kcal % fat) diet (LFD) or a high-fat (60 kcal % fat) diet (HFD) for 8 weeks. RESULTS: HFD induced macrophage infiltration and inflammation in the adipose tissue, as well as an increase in the circulating proinflammatory cytokines. HFD increased both plasma and fecal endotoxin levels and resulted in dysregulation of the gut microbiota by increasing the Firmicutes to Bacteriodetes ratio. HFD induced the growth of Enterobecteriaceae and the production of endotoxin in vitro. Furthermore, HFD induced colonic inflammation, including the increased expression of proinflammatory cytokines, the induction of Toll-like receptor 4 (TLR4), iNOS, COX-2, and the activation of NF-κB in the colon. HFD reduced the expression of tight junction-associated proteins claudin-1 and occludin in the colon. HFD mice demonstrated higher levels of Akt and FOXO3 phosphorylation in the colon compared to the LFD mice. While the body weight of HFD-fed mice was significantly increased in both TLR4-deficient and wild type mice, the epididymal fat weight and plasma endotoxin level of HFD-fed TLR4-deficient mice were 69% and 18% of HFD-fed wild type mice, respectively. Furthermore, HFD did not increase the proinflammatory cytokine levels in TLR4-deficient mice. CONCLUSIONS: HFD induces inflammation by increasing endotoxin levels in the intestinal lumen as well as in the plasma by altering the gut microbiota composition and increasing its intestinal permeability through the induction of TLR4, thereby accelerating obesity.


Assuntos
Dieta Hiperlipídica , Trato Gastrointestinal/microbiologia , Inflamação/metabolismo , Metagenoma , Obesidade/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adiposidade/genética , Animais , Colite/etiologia , Citocinas/sangue , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Endotoxinas/sangue , Endotoxinas/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Trato Gastrointestinal/metabolismo , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 4 Toll-Like/genética
9.
Phytomedicine ; 20(1): 84-8, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23079229

RESUMO

The rhizome of Codonopsis lanceolata (family Campanulaceae), which contains lancemaside A as a main constituent, has been used as herbal medicine to treat inflammation, insomnia, and hypomnesia. Lancemaside A and echinocystic acid, which is its metabolite by intestinal microflora, potently inhibited acetylcholinesterase activity in a dose-dependent manner, with IC50 value 13.6 µM and 12.2 µM, respectively. Its inhibitory potency is comparable with that of donepezil (IC50=10.9 µM). Lancemaside A and echinocystic acid significantly reversed scopolamine-induced memory and learning deficits on passive avoidance task. Lancemaside A orally administered 5h before treatment with scopolamine reversed scopolamine-induced memory and learning deficits more potently than one orally administered 1h before. Echinocystic acid more potently reversed it than lancemaside A. Lancemaside A and echinocystic acid significantly reversed scopolamine-induced memory and learning deficits on the Y-maze and Morris water maze tasks. Lancemaside A and echinocystic acid also increased the expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (p-CREB). Based on these findings, orally administered lancemaside A may be metabolized to echinocystic acid, which may be absorbed into the blood and ameliorate memory and learning deficits by inhibiting AChE activity and inducing BDNF and p-CREB expressions.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Codonopsis/química , Deficiências da Aprendizagem/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Fitoterapia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Donepezila , Relação Dose-Resposta a Droga , Indanos/farmacologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Deficiências da Aprendizagem/induzido quimicamente , Deficiências da Aprendizagem/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Piperidinas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Rizoma , Escopolamina
10.
J Ethnopharmacol ; 142(1): 105-112, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22855946

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Panax ginseng CA Meyer (ginseng) has been used for diabetes, cancer, stress and allergic diseases in the traditional Chinese medicine. AIM OF THE STUDY: To understand the role of intestinal microflora in the pharmacological effect of ginsenoside Re, which is a main constituent of ginseng, we investigated its anti-scratching behavioral effect in the mice treated with or without antibiotics. MATERIALS AND METHODS: Ginsenoside Re was orally administered to the mice treated with antibiotics (cefadroxil, oxytetracycline and erythromycin mixture (COE), streptomycin or/and tetracycline) and then investigated the relationship between ginsenoside Re-metabolizing ß-glucosidase and α-rhamnosidase activities of intestinal microflora and its antiscratching behavioral effect. The anti-scratching behavioral effects of ginsenosides were investigated in the increments of 1 h and 6 h after their oral administrations. The scratching behavioral frequency was measured for 1 h after treatment with histamine. RESULTS: Ginsenoside Re inhibited histamine-induced scratching behavior in mice. The anti-scratching behavioral effect of ginsenoside Re was more potent 6 h after its oral administration than 1 h after. However, its inhibitory effect was significantly attenuated in mice treated with COE, but it nearly was not affected in mice treated with streptomycin and/or tetracycline. Treatment with COE also significantly lowered fecal ginsenoside Re-metabolizing ß-glucosidase and α-rhamnosidase activities in mice, as well as fecal metabolic activity of ginsenoside Re to ginsenoside Rh1. The anti-scratching behavioral effect of ginsenoside Rh1, a metabolite of ginsenoside Re by intestinal microflora, was superior to that of ginsenoside Re. Ginsenoside Rh1 potently inhibited the expression of IL-4 and TNF-α, as well as the activation of NF-κB and c-jun activation in histamine-stimulated scratching behavioral mice. CONCLUSION: Ginsenoside Re may be metabolized to ginsenoside Rh1 by intestinal microflora, which enhances its anti-scratching behavioral effect by inhibiting NF-κB and c-jun activations.


Assuntos
Antibacterianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Ginsenosídeos/farmacologia , Adulto , Idoso , Animais , Antialérgicos/farmacologia , Bactérias Anaeróbias/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Fezes/enzimologia , Fezes/microbiologia , Feminino , Ginsenosídeos/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Histamina/farmacologia , Humanos , Interleucina-4/imunologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Pessoa de Meia-Idade , Ftalazinas/farmacologia , Prurido/induzido quimicamente , Prurido/imunologia , Prurido/fisiopatologia , Fator de Necrose Tumoral alfa/imunologia , Adulto Jovem , beta-Glucosidase/metabolismo
11.
Biochem Pharmacol ; 84(3): 331-40, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22564908

RESUMO

Orally administered lancemaside A, which is isolated from Codonopsis lanceolata (family Campanulaceae), showed anti-colitic effect in mice. However, its metabolite echinocystic acid was absorbed into the blood. Therefore, its anti-inflammatory effects were investigated in lipopolysaccharide (LPS)-stimulated alveolar macrophages in vitro and acute lung injury in vivo. Alveolar macrophages from mice were stimulated with LPS and were treated with echinocystic acid. Acute lung injury was induced by intratracheal administration of LPS in mice. Mice were treated with echinocystic acid or dexamethasone. Echinocystic acid potently suppressed the production of the pro-inflammatory cytokines, TNF-α and IL-1ß, as well as of the activations of NF-κB and MAPKS, in LPS-stimulated alveolar macrophages. Echinocystic acid also down-regulated the production of inflammatory markers, which included inducible nitric oxide synthase and cyclooxygenase-2, as well as the inflammatory mediators, nitric oxide and prostaglandin E(2), in LPS-stimulated alveolar macrophages. Echinocystic acid also inhibited the activation of IL-1 receptor-associated kinases, and the activation of mitogen-activated protein kinases in LPS-stimulated alveolar macrophages. Furthermore, echinocystic acid potently inhibited the interaction between LPS and TLR4 in alveolar macrophages transfected with or without MyD88 siRNA, although it did not inhibit the binding in the macrophages transfected with TLR4 siRNA. Echinocystic acid suppressed LPS-induced acute lung inflammation in mice, as well as the expression of pro-inflammatory cytokines, such as IL-1ß and TNF-α, and their transcription factor, NF-κB. On the basis of these findings, echinocystic acid, a metabolite of lancemaside A, may express anti-inflammatory effects by inhibiting the binding of LPS to TLR4 on macrophages.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Lipopolissacarídeos/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , NF-kappa B/metabolismo , Ácido Oleanólico/análogos & derivados , Pneumonia/prevenção & controle , Receptor 4 Toll-Like/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Células Cultivadas , Relação Dose-Resposta a Droga , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/fisiologia , NF-kappa B/antagonistas & inibidores , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores
12.
Phytother Res ; 26(4): 546-51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21928370

RESUMO

The stem-bark of Kalopanax pictus (KP, family Araliaceae), which contains triterpenoid saponins, has been shown to exhibit anticarcinogenic, antiinflammatory, antirheumatoid and antidiabetic activities. In a preliminary study, a KP methanol extract demonstrated acetylcholinesterase activity in vitro and memory enhancement in scopolamine-treated mice. Therefore, we isolated acetylcholinesterase inhibitors, kalopanaxsaponins A and B, from a KP butanol (BuOH) fraction, measured acetylcholinesterase activity in vitro, and investigated their memory-enhancing effects in a passive avoidance test, Y-maze test and Morris water maze test. These constituents inhibited acetylcholinesterase activity and significantly reversed scopolamine-induced deficits. They also increased brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding (p-CREB) protein expression but reduced TNF-α increased by scopolamine. Based on these findings, kalopanaxsaponins A and B may ameliorate memory deficits by inhibiting acetylcholinesterase activity and inducing BDNF and p-CREB expression.


Assuntos
Kalopanax/química , Transtornos da Memória/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Fitoterapia , Saponinas/uso terapêutico , Acetilcolinesterase/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Butanóis , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/uso terapêutico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Metanol , Camundongos , Camundongos Endogâmicos ICR , Nootrópicos/isolamento & purificação , Nootrópicos/uso terapêutico , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/uso terapêutico , Fosforilação , Casca de Planta/química , Saponinas/isolamento & purificação , Escopolamina/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo
13.
Int Immunopharmacol ; 12(1): 110-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22107725

RESUMO

Heating and steaming processes have been applied to various natural medicines for either enhancing or altering their pharmacological activities, and the chemical compositions of the active components. While ginsenoside Rb1, which is the major constituent of raw ginseng, has been studied extensively for its anti-inflammatory effect, the biological activity of ginsenoside Rg5, a major constituent of steamed ginseng, remains to be explored. Here, we isolated Rg5 and examined anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated macrophages and on LPS-induced lung inflammation. Rg5 inhibited the expression of proinflammatory cytokines, IL-1ß and TNF-α, as well as inflammatory enzymes, COX-2 and iNOS in LPS-stimulated alveolar macrophages. Rg5 also reduced LPS-induced phosphorylation of IL-1 receptor-associated kinases (IRAK)-1 and IKK-ß, as well as the degradation of IRAK-1 and IRAK-4. Rg5 inhibited the phosphorylation of NF-κB as well as the translocation of p65 into the nucleus. When macrophages were treated with Alexa Fluor 594-conjugated LPS in the presence of Rg5, the fluorescence intensity of LPS observed outside the cell membrane was lower than that in LPS-stimulated alveolar macrophages alone. Rg5, inhibited the levels of protein and neutrophils in bronchoalveolar lavage fluid of LPS-stimulated mice, as well as pro-inflammatory cytokines, TNF-α and IL-1ß. Rg5 also inhibited iNOS and COX expressions, and NF-κB activation in LPS-stimulated lung inflammation of mice. The inhibitory effect of Rg5 (10 mg/kg) was comparable to that of dexamethasone (5 mg/kg). Based on these findings, Rg5 can ameliorate lung inflammation possibly by inhibiting the binding of LPS to toll-like receptor (TLR)-4 on macrophages.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Ginsenosídeos/uso terapêutico , Macrófagos Alveolares/efeitos dos fármacos , Receptor 4 Toll-Like/imunologia , Lesão Pulmonar Aguda/imunologia , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/imunologia , Ginsenosídeos/farmacologia , Quinase I-kappa B/imunologia , Proteínas I-kappa B/imunologia , Interleucina-1beta/imunologia , Lipopolissacarídeos , Macrófagos Alveolares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/imunologia , Fator de Necrose Tumoral alfa/imunologia
14.
Biomol Ther (Seoul) ; 20(5): 457-62, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24009834

RESUMO

The stem-bark of Kalopanax pictus (KP, family Araliaceae), of which main constituent is kalopanaxsaponin B, has been used for asthma, rhinitis, and arthritis in Chinese traditional medicine. To clarify anticolitic effect of KP, we examined anti-inflammatory effect of KP extract and kalopanaxsaponin B in lipopolysaccharide (LPS)-stimulated peritoneal macrophage and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitic mice. Of KP extracts, KP BuOH-soluble fraction most potently inhibited LPS-induced IL-1ß, IL-6 and TNF-α expression, as well as NF-κB activation. However, KP BuOH fraction increased IL-10, an anti-inflammatory cytokine. KP BuOH fraction also inhibited colon shortening and myeloperoxidase activity in TNBS-induced colitic mice. KP BuOH fraction also potently inhibited the expression of the pro-inflammatory cytokines, IL-1ß, IL-6 and TNF-α as well as the activation of NF-κB. Kalopanaxsaponin B, a main constituent of KP, inhibited TNBS-induced colonic inflammation, including colon shortening, and TNBS-increased myeloperoxidase activity pro-inflammatory cytokine expression and NF-κB activation in mice. Based on these findings, KP, particularly its main constituent, kalopanaxsaponin B, may ameliorate colitis by inhibiting NF-κB pathway.

15.
Eur J Med Chem ; 47(1): 485-92, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22138309

RESUMO

Three new series of novel alkylphosphocholine (APC) derivatives containing a cyclopentane ring near the phosphocholine head group were synthesized. In the first set of analogues, the phosphocholine head group was attached to the secondary alcohol of trans-2-(hydroxymethyl)cyclopentanol, whereas in the second and third sets of analogues, the phosphocholine head group was linked to the primary alcohol of trans- and cis-2-(hydroxymethyl)cyclopentanol, respectively. Of the compounds synthesized, compound 6d most potently inhibited Akt phosphorylation with an IC(50) value of 3.6 µM, its potency was greater than the reference compounds miltefosine, perifosine, and erufosine. Compounds 6b and 6d exhibited the most potent growth-inhibitory effects on A549, MCF-7, and KATO-III human cancer cell lines. These compounds also showed more active anti-proliferative effects than the reference compounds. Importantly, the cytotoxic effects of these compounds on A549 cell line were proportional to their abilities to inhibit Akt phosphorylation, which supports that these synthesized APC compounds are novel inhibitors of the Akt cell survival pathway.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Ciclopentanos/química , Fosforilcolina/química , Fosforilcolina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Fosforilação/efeitos dos fármacos , Fosforilcolina/síntese química , Estereoisomerismo
16.
J Agric Food Chem ; 59(24): 13165-72, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22060784

RESUMO

Many clinical studies have shown that daily intake of soybean [ Glycine max (L.) Merr., Fabacease] or its foods may reduce the risk of osteoporosis, heart attack, hyperlipidemia, coronary heart disease, cardiovascular and chronic renal diseases, and cancers, including prostate, colon, and breast cancers. Of the soy constituents, soyasaponins exhibit anti-aging, antioxidant, apoptotic, and anti-inflammatory effects. However, the anti-inflammatory effect of soyasaponin Ab has not been thoroughly studied. Therefore, we investigated its anti-inflammatory effects in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitic mice and lipopolysaccharide (LPS)-stimulated peritoneal macrophages. Soyasaponin Ab inhibited colon shortening, myeloperoxidase activity, the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and activation of the transcription factor nuclear factor-κB (NF-κB). Soyasaponin Ab (1, 2, 5, and 10 µM) inhibited the production of NO (IC(50) = 1.6 ± 0.1 µM) and prostaglandin E(2) (IC(50) = 2.0 ± 0.1 ng/mL), the expression of tumor necrosis factor (TNF)-α (IC(50) = 1.3 ± 0.1 ng/mL), interleukin (IL)-1ß (IC(50) = 1.5 ± 0.1 pg/mL), and toll-like receptor (TLR)4, and the phosphorylation of interleukin-1 receptor-associated kinase (IRAK)-1 in LPS-stimulated peritoneal macrophages. Soyasaponin Ab weakly inhibited the phosphorylation of ERK, JNK, and p38. Soyasaponin Ab significantly reduced the binding of Alexa-Fluor-594-conjugated LPS to peritoneal macrophages. Soyasaponin Ab did not affect TLR4 expression or LPS-induced NF-κB activation in TLR4 siRNA-treated peritoneal macrophages (knockdown efficiency of TLR4 > 94%). On the basis of these findings, soyasaponin Ab may ameliorate colitis by inhibiting the binding of LPS to TLR4 on macrophages.


Assuntos
Anti-Inflamatórios/administração & dosagem , Colite/tratamento farmacológico , Lipopolissacarídeos/metabolismo , Macrófagos Peritoneais/química , Saponinas/administração & dosagem , Receptor 4 Toll-Like/metabolismo , Animais , Colite/induzido quimicamente , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Receptor 4 Toll-Like/efeitos dos fármacos , Ácido Trinitrobenzenossulfônico
17.
Biochem Pharmacol ; 82(3): 278-86, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21600888

RESUMO

In the preliminary study, ginsenoside Rb1, a main constituent of the root of Panax ginseng (family Araliaceae), and its metabolite compound K inhibited a key factor of inflammation, nuclear transcription factor κB (NF-κB) activation, in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. When ginsenoside Rb1 or compound K were orally administered to 2,4,6-trinitrobenzene sulfuric acid (TNBS)-induced colitic mice, these agents inhibited colon shortening, macroscopic score, and colonic thickening. Furthermore, treatment with ginsenoside Rb1 or compound K at 20mg/kg inhibited colonic myeloperoxidase activity by 84% and 88%, respectively, as compared with TNBS alone (p<0.05), and also potently inhibited the expression of tumor necrosis factor-α, interleukin (IL)-1ß and IL-6, but increased the expression of IL-10. Both ginsenoside Rb1 and compound K blocked the TNBS-induced expressions of COX-2 and iNOS and the activation of NF-κB in mice. When ginsenoside Rb1 or compound K was treated in LPS-induced murine peritoneal macrophages, these agents potently inhibited the expression of the proinflammatory cytokines. Ginsenoside Rb1 and compound K also significantly inhibited the activation of interleukin-1 receptor-associated kinase-1 (IRAK-1), IKK-ß, NF-κB, and MAP kinases (ERK, JNK, and p-38); however, interaction between LPS and Toll-like receptor-4, IRAK-4 activation and IRAK-2 activation were unaffected. Furthermore, compound K inhibited the production of proinflammatory cytokines more potently than did those of ginsenoside Rb1. On the basis of these findings, ginsenosides, particularly compounds K, could be used to treat inflammatory diseases, such as colitis, by targeting IRAK-1 activation.


Assuntos
Colite/induzido quimicamente , Inibidores Enzimáticos/farmacologia , Ginsenosídeos/farmacologia , Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Animais , Colite/tratamento farmacológico , Colite/patologia , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estrutura Molecular , Panax/química , Ácido Trinitrobenzenossulfônico/toxicidade
18.
Planta Med ; 77(13): 1525-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21308615

RESUMO

The seeds of Arctium lappa L. (AL, family Asteraceae), the main constituents of which are arctiin and arctigenin, have been used as an herbal medicine or functional food to treat inflammatory diseases. These main constituents were shown to inhibit acetylcholinesterase (AChE) activity. Arctigenin more potently inhibited AChE activity than arctiin. Arctigenin at doses of 30 and 60 mg/kg (p. o.) potently reversed scopolamine-induced memory deficits by 62 % and 73 %, respectively, in a passive avoidance test. This finding is comparable with that of tacrine (10 mg/kg p. o.). Arctigenin also significantly reversed scopolamine-induced memory deficits in the Y-maze and Morris water maze tests. On the basis of these findings, arctigenin may ameliorate memory deficits by inhibiting AChE.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Arctium/química , Furanos/farmacologia , Lignanas/farmacologia , Transtornos da Memória/tratamento farmacológico , Fitoterapia , Extratos Vegetais/farmacologia , Acetilcolinesterase/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Medicamentos de Ervas Chinesas , Alimento Funcional , Furanos/química , Furanos/isolamento & purificação , Glucosídeos/química , Glucosídeos/isolamento & purificação , Glucosídeos/farmacologia , Lignanas/química , Lignanas/isolamento & purificação , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/química , Escopolamina/farmacologia , Sementes/química , Tacrina/farmacologia
19.
J Ethnopharmacol ; 134(3): 1010-3, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21333723

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gynostemma pentaphyllum (Thunb.) Makino (GP, family Cucurbitaceae), which contains dammarane saponins as its main constituents, is used in China, Japan, and Korea as a traditional medicine to treat cancer, obesity, arteriosclerosis, asthma and senility. AIM OF THE STUDY: To investigate the memory-enhancing effects of GP, Gypenoside TN-2 (TN-2) was isolated by activity-guided fractionation and administered to scopolamine-induced memory-deficient mice. MATERIALS AND METHODS: The memory-enhancing effects of TN-2 were evaluated using passive avoidance, Y-maze, and Morris water maze tests, and the protein expressions of brain-derived neurotrophic factor (BDNF), cAMP element binding protein (CREB), and p-CREB were determined by immunoblotting. RESULTS: TN-2 inhibited memory and learning deficits in scopolamine treated mice in the passive avoidance test. TN-2 (10, 20, and 40 mg/kg, p.o.) significantly inhibited memory and learning deficits in the passive avoidance test by 40%, 96% and 78%, respectively, and exhibited significant memory-enhancing effects on the Y-maze test and the Morris water maze test. TN-2 also markedly increased BNDF expression and activated the transcription factor CREB in the hippocampi of scopolamine-treated mice. CONCLUSIONS: TN-2 may ameliorate memory and learning deficits by activating the CREB-BDNF pathway.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Deficiências da Aprendizagem/tratamento farmacológico , Escopolamina/toxicidade , Animais , Gynostemma , Deficiências da Aprendizagem/induzido quimicamente , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/uso terapêutico , Espectrometria de Massas por Ionização por Electrospray
20.
Br J Pharmacol ; 162(8): 1731-42, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21198552

RESUMO

BACKGROUND AND PURPOSE: Kalopanaxsaponin A, a triterpenoid saponin isolated from Kalopanax pictus (family Araliaceae), potently inhibited nuclear factor-kappa B (NF-κB) activation in lipopolysaccharide (LPS)-stimulated peritoneal macrophages during a screening programme for anti-colitis agents from natural products. Its anti-inflammatory mechanism remains unknown. Therefore, we investigated its anti-inflammatory effects in lipopolysaccharide (LPS)- or peptidoglycan-stimulated murine peritoneal macrophages and trinitrobenzene sulphonic acid (TNBS)-induced colitic mice. EXPERIMENTAL APPROACH: Peritoneal macrophages from male ICR mice were stimulated with LPS or peptidoglycan in vitro and treated with kalopanaxsaponin A. Colitis was induced in vivo by intrarectal administration of TNBS in male ICR mice. Mice were treated daily with kalopanaxsaponin A, sulphasalazine or phosphate-buffered saline. Inflammatory markers, cytokines, enzymes and transcription factors were measured by ELISA, immunoblot, flow cytometry and immunofluorescent confocal microscopy. KEY RESULTS: Kalopanaxsaponin A potently inhibited the expression of the pro-inflammatory cytokines, interleukin (IL)-1ß, tumour necrosis factor (TNF)-α and IL-6, induced by LPS, but not that induced by TNF-α, in peritoneal macrophages. However, it potently increased the expression of the anti-inflammatory cytokine IL-10. Kalopanaxsaponin A inhibited activation of the IL-1 receptor-associated kinase (IRAK)-1, inhibitor of κB kinase-ß, NF-κB and mitogen-activated protein kinases (extracellular signal-regulated kinase, c-Jun NH(2) -terminal kinase, p-38), but LPS/Toll-like receptor-4 interaction and IRAK-4 activation were not affected. Oral administration of kalopanaxsaponin A (10 and 20 mg·kg(-1) ) improved the clinical parameters and histology in vivo. Kalopanaxsaponin A inhibited NF-κB and mitogen-activated protein kinase activation induced by TNBS by suppressing IRAK-1 activation. CONCLUSIONS AND IMPLICATIONS: Kalopanaxsaponin A may improve inflammatory diseases, such as colitis, by inhibiting IRAK-1 activation.


Assuntos
Colite/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Colite/fisiopatologia , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Ácido Oleanólico/administração & dosagem , Ácido Oleanólico/farmacologia , Saponinas/administração & dosagem , Sulfassalazina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...