Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1864(6): 183884, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35182589

RESUMO

Nanodiscs are used to stabilize membrane proteins in a lipid environment and enable investigations of the function and structure of these. Membrane proteins are often only available in small amounts, and thus the stability and ease of use of the nanodiscs are essential. We have recently explored circularizing and supercharging membrane scaffolding proteins (MSPs) for nanodisc formation and found increased temporal stability at elevated temperatures. In the present study, we investigate six different supercharged MSPs and their ability to form nanodiscs: three covalently circularized and the three non-circularized, linear versions. Using standard reconstitution protocols using cholate as the reconstitution detergent, we found that two of the linear constructs formed multiple lipid-protein species, whereas adding n-Dodecyl-B-D-maltoside (DDM) with the cholate in the reconstitution gave rise to single-species nanodisc formation for these MSPs. For all MSPs, the formed nanodiscs were analyzed by small-angle X-ray scattering (SAXS), which showed similar structures for each MSP, respectively, suggesting that the structures of the formed nanodiscs are independent of the initial DDM content, as long as cholate is present. Lastly, we incorporated the membrane protein proteorhodopsin into the supercharged nanodiscs and observed a considerable increase in incorporation yield with the addition of DDM. For the three circularized MSPs, a single major species appeared in the size exclusion chromatography (SEC) chromatogram, suggesting monodisperse nanodiscs with proteorhodopsin incorporated, which is in strong contrast to the samples without DDM showing almost no incorporation and high polydispersity.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Colatos , Detergentes/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504004

RESUMO

Pentameric ligand-gated ion channels undergo subtle conformational cycling to control electrochemical signal transduction in many kingdoms of life. Several crystal structures have now been reported in this family, but the functional relevance of such models remains unclear. Here, we used small-angle neutron scattering (SANS) to probe ambient solution-phase properties of the pH-gated bacterial ion channel GLIC under resting and activating conditions. Data collection was optimized by inline paused-flow size-exclusion chromatography, and exchanging into deuterated detergent to hide the micelle contribution. Resting-state GLIC was the best-fit crystal structure to SANS curves, with no evidence for divergent mechanisms. Moreover, enhanced-sampling molecular-dynamics simulations enabled differential modeling in resting versus activating conditions, with the latter corresponding to an intermediate ensemble of both the extracellular and transmembrane domains. This work demonstrates state-dependent changes in a pentameric ion channel by SANS, an increasingly accessible method for macromolecular characterization with the coming generation of neutron sources.


Assuntos
Proteínas de Bactérias/química , Ativação do Canal Iônico , Canais Iônicos de Abertura Ativada por Ligante/química , Nêutrons , Multimerização Proteica , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Cianobactérias/metabolismo , Simulação de Dinâmica Molecular
3.
Anal Chem ; 93(37): 12698-12706, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34498849

RESUMO

Isothermal titration calorimetry (ITC) is a widely used method to determine binding affinities and thermodynamics in ligand-receptor interactions, but it also has the capability of providing detailed information on much more complex events. However, the lack of available methods to analyze ITC data is limiting the use of the technique in such multifaceted cases. Here, we present the software ANISPROU. Through a semi-empirical approach that allows for extraction of quantitative information from complex ITC data, ANISPROU solves an inverse problem where three parameters describing a set of predefined functions must be found. In analogy to strategies adopted in other scientific fields, such as geophysics, imaging, and many others, it employs an optimization algorithm which minimizes the difference between calculated and experimental data. In contrast to the existing methods, ANISPROU provides automated and objective analysis of ITC data on sodium dodecyl sulfate (SDS)-induced protein unfolding, and in addition, more information can be extracted from the data. Here, data series on SDS-mediated protein unfolding is analyzed, and binding isotherms and thermodynamic information on the unfolding events are extracted. The obtained binding isotherms as well as the enthalpy of different events are similar to those obtained using the existing manual methods, but our methodology ensures a more robust result, as the entire data set is used instead of single data points. We foresee that ANISPROU will be useful in other cases with complex enthalpograms, for example, in cases with coupled interactions in biomolecular, polymeric, and amphiphilic systems including cases where both structural changes and interactions occur simultaneously.


Assuntos
Tensoativos , Calorimetria , Ligantes , Ligação Proteica , Dodecilsulfato de Sódio , Termodinâmica
4.
Soft Matter ; 12(27): 5937-49, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27306692

RESUMO

Three dimers of the amphipathic α-helical peptide 18A have been synthesized with different interhelical linkers inserted between the two copies of 18A. The dimeric peptides were denoted 'beltides' where Beltide-1 refers to the 18A-dimer without a linker, Beltide-2 is the 18A-dimer with proline (Pro) as a linker and Beltide-3 is the 18A-dimer linked by two glycines (Gly-Gly). The self-assembly of the beltides with the phospholipid DMPC was studied with and without the incorporated membrane protein bacteriorhodopsin (bR) through a combination of coarse-grained MD simulations, size-exclusion chromatography (SEC), circular dichroism (CD) spectroscopy, small-angle scattering (SAS), static light scattering (SLS) and UV-Vis spectroscopy. For all three beltides, MD and combined small-angle X-ray and -neutron scattering were consistent with a disc structure composed by a phospholipid bilayer surrounded by a belt of peptides and with a total disc diameter of approximately 10 nm. CD confirmed that all three beltides were α-helical in the free form and with DMPC. However, as shown by SEC the different interhelical linkers clearly led to different properties of the beltides. Beltide-3, with the Gly-Gly linker, was very adaptable such that peptide nanodiscs could be formed for a broad range of different peptide to lipid stoichiometries and therefore also possible disc-sizes. On the other hand, both Beltide-2 with the Pro linker and Beltide-1 without a linker were less adaptable and would only form discs of certain peptide to lipid stoichiometries. SLS revealed that the structural stability of the formed peptide nanodiscs was also highly affected by the linkers and it was found that Beltide-1 gave more stable discs than the other two beltides. With respect to membrane protein stabilization, each of the three beltides in combination with DMPC stabilizes the seven-helix transmembrane protein bacteriorhodopsin significantly better than the detergent octyl glucoside, but no significant difference was observed between the three beltides. We conclude that adaptability, size, and structural stability can be tuned by changing the interhelical linker while maintaining the properties of the discs with respect to membrane protein stabilization.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana/química , Peptídeos/química , Fosfolipídeos/química , Sequência de Aminoácidos , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...