Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Reprod Dev ; 89(10): 471-484, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35830347

RESUMO

The germ cells are essential for sexual reproduction by giving rise to the gametes, but the importance of germ cells for gonadal somatic functions varies among vertebrates. The RNA-binding dead end (Dnd) protein is necessary for the specification and migration of primordial germ cells to the future reproductive organs. Here, we ablated the gametes in Atlantic salmon males and females by microinjecting dnd antisense gapmer oligonucleotides at the zygotic stage. Precocious maturation was induced in above 50% of both germ cell-depleted and intact fertile males, but not in females, by exposure to an off-season photoperiod regime. Sterile and fertile males showed similar body growth, but maturing fish tended to be heavier than their immature counterparts. Pituitary fshß messenger RNA levels strongly increased in maturing sterile and fertile males concomitant with the upregulated expression of Sertoli and Leydig cell markers. Plasma concentrations of 11-ketotestosterone and testosterone in maturing sterile males were significantly higher than the basal levels in immature fish, but lower than those in maturing fertile males. The study demonstrates that germ cells are not a prerequisite for the activation of the brain-pituitary-gonad axis and sex steroidogenesis in Atlantic salmon males, but may be important for the maintenance of gonadal somatic functions.


Assuntos
Salmo salar , Animais , Masculino , Feminino , Salmo salar/metabolismo , Células Germinativas/metabolismo , Hipófise/metabolismo , RNA Mensageiro/metabolismo , Testosterona/metabolismo , Oligonucleotídeos
2.
Fish Shellfish Immunol ; 93: 895-903, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31425829

RESUMO

Peracetic acid (PAA), a strong organic peroxide, is considered a relatively sustainable disinfectant in aquaculture because of its broad effectivity against many pathogens at low concentrations and because it degrades spontaneously to harmless residues. The impacts of PAA on fish health must be determined before its use as either a routine disinfectant or chemotherapeutant. Here we investigated the systemic and mucosal stress responses of Atlantic salmon (Salmo salar) to PAA. In experiment 1, salmon were exposed to different nominal concentrations (0, 0.6, and 2.4 ppm) of PAA for 5 min, followed by a re-exposure to the same concentrations for 30 min 2 weeks later. Sampling was performed before exposure to PAA and at 2 h, 48 h, and 2 w after exposures. In experiment 2, fish were subjected to crowding stress prior to PAA exposure at 4.8 ppm for 30 min. The fish were sampled before exposure and 1 h, 4 h, and 2 w after. The two trials were performed in a recirculation system. Both systemic (i.e., plasma cortisol, glucose, lactate, total antioxidant capacity) and mucosal (i.e., expression of antioxidant coding genes in the skin and gills) stress indicators were affected by the treatments at varying levels, and it was apparent that the fish were able to mount a robust response to the physiological demands of PAA exposure. The cortisol levels increased in the early hours after exposure and returned to basal level afterwards. Prior exposure history to PAA did not markedly affect the levels of plasma lactate and glucose when fish were re-exposed to PAA. Crowding stress before PAA treatment, however, did alter some of the stress indicators (i.e., lactate, glucose and expression of antioxidant genes in the gills), suggesting that stress history serves as both a confounding and compounding factor on how stress responses to PAA are mobilised. Nonetheless, the changes were not substantial. Gene expression profile analyses revealed that the antioxidant system was more responsive to PAA in the gills than in the skin. The increased antioxidant capacity in the plasma, particularly at 2.4 ppm and higher, indicates that antioxidants were produced to neutralise the internal redox imbalance resulting from PAA exposure. In conclusion, the results show that salmon were able to mount a robust adaptive response to different PAA doses and exposure times, and a combined exposure to stress and PAA. These results underscore the potential of PAA as a chemotherapeutant for salmon at PAA concentrations commonly applied to control parasitic infestations.


Assuntos
Desinfetantes/efeitos adversos , Imunidade nas Mucosas/fisiologia , Ácido Peracético/efeitos adversos , Salmo salar/imunologia , Estresse Fisiológico/fisiologia , Animais , Relação Dose-Resposta a Droga , Oxidantes/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...