Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(11)2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30463196

RESUMO

This paper deals with recently proposed algorithms for real-time distributed blind macro-calibration of sensor networks based on consensus (synchronization). The algorithms are completely decentralized and do not require a fusion center. The goal is to consolidate all of the existing results on the subject, present them in a unified way, and provide additional important analysis of theoretical and practical issues that one can encounter when designing and applying the methodology. We first present the basic algorithm which estimates local calibration parameters by enforcing asymptotic consensus, in the mean-square sense and with probability one (w.p.1), on calibrated sensor gains and calibrated sensor offsets. For the more realistic case in which additive measurement noise, communication dropouts and additive communication noise are present, two algorithm modifications are discussed: one that uses a simple compensation term, and a more robust one based on an instrumental variable. The modified algorithms also achieve asymptotic agreement for calibrated sensor gains and offsets, in the mean-square sense and w.p.1. The convergence rate can be determined in terms of an upper bound on the mean-square error. The case when the communications between nodes is completely asynchronous, which is of substantial importance for real-world applications, is also presented. Suggestions for design of a priori adjustable weights are given. We also present the results for the case in which the underlying sensor network has a subset of (precalibrated) reference sensors with fixed calibration parameters. Wide applicability and efficacy of these algorithms are illustrated on several simulation examples. Finally, important open questions and future research directions are discussed.

2.
Biosystems ; 80(3): 273-82, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15888342

RESUMO

With the availability of technologies that allow us to obtain stimulus-response time series data for modeling and system identification, there is going to be an increasing need for conceptual frameworks in which to formulate and test hypotheses about intra- and inter-cellular dynamics, in general and not just dependent on a particular cell line, cell type, organism, or technology. While the semantics can be quite different, biologists and systems scientists use in many cases a similar language (notion of feedback, regulation, etc.). A more abstract system-theoretic framework for signals, systems, and control could provide the biologist with an interface between the domains. Apart from recent examples to identify functional elements and describing them in engineering terms, there have been various more abstract developments to describe dynamics at the cell level in the past. This includes Rosen's (M,R)-systems. This paper presents an abstract and general compact mathematical framework of intracellular dynamics, regulation and regime switching inspired by (M,R)-theory and based on hybrid automata.


Assuntos
Biologia Celular , Biologia Computacional/métodos , Algoritmos , Animais , Diferenciação Celular , Computadores , Humanos , Sistema de Sinalização das MAP Quinases , Substâncias Macromoleculares , Modelos Biológicos , Modelos Estatísticos , Modelos Teóricos , Estrutura Terciária de Proteína , Transdução de Sinais , Software , Biologia de Sistemas , Teoria de Sistemas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...