Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(1998): 20230045, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37132234

RESUMO

The efficiency with which flying animals convert metabolic power to mechanical power dictates an individual's flight behaviour and energy requirements. Despite the significance of this parameter, we lack empirical data on conversion efficiency for most species as in vivo measurements are notoriously difficult to obtain. Furthermore, conversion efficiency is often assumed to be constant across flight speeds, even though the components driving flight power are speed-dependent. We show, through direct measurements of metabolic and aerodynamic power, that conversion efficiency in the migratory bat (Pipistrellus nathusii) increases from 7.0 to 10.4% with flight speed. Our findings suggest that peak conversion efficiency in this species occurs near maximum range speed, where the cost of transport is minimized. A meta-analysis of 16 bird and 8 bat species revealed a positive scaling relationship between estimated conversion efficiency and body mass, with no discernible differences between bats and birds. This has profound consequences for modelling flight behaviour as estimates assuming 23% efficiency underestimate metabolic costs for P. nathusii by almost 50% on average (36-62%). Our findings suggest that conversion efficiency may vary around an ecologically relevant optimum speed and provide a crucial baseline for investigating whether this drives variation in conversion efficiency between species.


Assuntos
Quirópteros , Animais , Voo Animal , Aves , Metabolismo Energético , Fenômenos Biomecânicos
2.
J Exp Biol ; 224(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34042974

RESUMO

Hovering insects are divided into two categories: 'normal' hoverers that move the wing symmetrically in a horizontal stroke plane, and those with an inclined stroke plane. Normal hoverers have been suggested to support their weight during both downstroke and upstroke, shedding vortex rings each half-stroke. Insects with an inclined stroke plane should, according to theory, produce flight forces only during downstroke, and only generate one set of vortices. The type of hovering is thus linked to the power required to hover. Previous efforts to characterize the wake of hovering insects have used low-resolution experimental techniques or simulated the flow using computational fluid dynamics, and so it remains to be determined whether insect wakes can be represented by any of the suggested models. Here, we used tomographic particle image velocimetry, with a horizontal measurement volume placed below the animals, to show that the wake shed by hovering hawkmoths is best described as a series of bilateral, stacked vortex 'rings'. While the upstroke is aerodynamically active, despite an inclined stroke plane, it produces weaker vortices than the downstroke. In addition, compared with the near wake, the far wake lacks structure and is less concentrated. Both near and far wakes are clearly affected by vortex interactions, suggesting caution is required when interpreting wake topologies. We also estimated induced power (Pind) from downwash velocities in the wake. Standard models predicted a Pind more than double that from our wake measurements. Our results thus question some model assumptions and we propose a reevaluation of the model parameters.


Assuntos
Voo Animal , Mariposas , Animais , Fenômenos Biomecânicos , Aves , Modelos Biológicos , Asas de Animais
3.
J Exp Biol ; 223(Pt 18)2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32796040

RESUMO

Cost of flight at various speeds is a crucial determinant of flight behaviour in birds. Aerodynamic models, predicting that mechanical power (Pmech) varies with flight speed in a U-shaped manner, have been used together with an energy conversion factor (efficiency) to estimate metabolic power (Pmet). Despite few empirical studies, efficiency has been assumed constant across flight speeds at 23%. Ideally, efficiency should be estimated from measurements of both Pmech and Pmet in un-instrumented flight. Until recently, progress has been hampered by methodological constraints. The main aim of this study was to evaluate recently developed techniques and estimate flight efficiency across flight speeds. We used the 13C-labelled sodium bicarbonate method (NaBi) and particle image velocimetry (PIV) to measure Pmet and Pmech in blackcaps flying in a wind tunnel. We also cross-validated measurements made by NaBi with quantitative magnetic resonance (QMR) body composition analysis in yellow-rumped warblers. We found that Pmet estimated by NaBi was ∼12% lower than corresponding values estimated by QMR. Pmet varied in a U-shaped manner across flight speeds in blackcaps, but the pattern was not statistically significant. Pmech could only be reliably measured for two intermediate speeds and estimated efficiency ranged between 14% and 22% (combining the two speeds for raw and weight/lift-specific power, with and without correction for the ∼12% difference between NaBi and QMR), which were close to the currently used default value. We conclude that NaBi and PIV are viable techniques, allowing researchers to address some of the outstanding questions regarding bird flight energetics.


Assuntos
Voo Animal , Passeriformes , Animais , Fenômenos Biomecânicos , Pesos e Medidas Corporais , Bicarbonato de Sódio
4.
Curr Biol ; 28(21): 3502-3507.e4, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30344122

RESUMO

Most flying animals, from insects to seabirds [1], perform flights close to ground or water when taking off or landing [2], drinking, and feeding [3-5] or when traveling near water surfaces [1, 6, 7]. When flying close to a surface within approximately one wingspan, the surface acts as an aerodynamic mirror, interrupting the downwash [8, 9], resulting in increased pressure underneath the wing and suppression of wingtip vortex development [10]. This aerodynamic interaction lowers the energy added to the air by the animal, reducing the cost of flying. Modeling suggests that flapping wings in ground effect can affect the expected power savings compared to gliding flight, either positively or negatively, depending on the wing motion [11-13]. Although aerodynamic theory predicts substantial power reductions when animals fly in ground effect [4-6, 9, 11, 12], quantitative measurements of savings are lacking. Here, we show, through wake-based power measurements, that Daubenton's bats utilize 29% less aerodynamic power when flying in compared to out of ground effect, which is twice the predicted savings. Contrary to theoretical predictions [4-6, 9, 11, 12] we find no variation in savings with distance above ground when in ground effect. Given alterations in kinematics with ground proximity, we hypothesize that modulation of wing kinematics raises the achievable benefit from ground effect relative to current model predictions. The savings from ground effect are comparable to formation flight [14, 15] but are not limited to large bird species. Instead, ground effect is experienced by most flying animals and may have facilitated the evolution of powered animal flight.


Assuntos
Quirópteros/fisiologia , Voo Animal , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Masculino
5.
J R Soc Interface ; 15(138)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29386402

RESUMO

How aerodynamic power required for animal flight varies with flight speed determines optimal speeds during foraging and migratory flight. Despite its relevance, aerodynamic power provides an elusive quantity to measure directly in animal flight. Here, we determine the aerodynamic power from wake velocity fields, measured using tomographical particle image velocimetry, of pied flycatchers flying freely in a wind tunnel. We find a shallow U-shaped power curve, which is flatter than expected by theory. Based on how the birds vary body angle with speed, we speculate that the shallow curve results from increased body drag coefficient and body frontal area at lower flight speeds. Including modulation of body drag in the model results in a more reasonable fit with data than the traditional model. From the wake structure, we also find a single starting vortex generated from the two wings during the downstroke across flight speeds (1-9 m s-1). This is accomplished by the arm wings interacting at the beginning of the downstroke, generating a unified starting vortex above the body of the bird. We interpret this as a mechanism resulting in a rather uniform downwash and low induced power, which can help explain the higher aerodynamic performance in birds compared with bats.


Assuntos
Quirópteros/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Aves Canoras/fisiologia , Asas de Animais/fisiologia , Animais
6.
J R Soc Interface ; 14(135)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29070593

RESUMO

Bats navigate the dark using echolocation. Echolocation is enhanced by external ears, but external ears increase the projected frontal area and reduce the streamlining of the animal. External ears are thus expected to compromise flight efficiency, but research suggests that very large ears may mitigate the cost by producing aerodynamic lift. Here we compare quantitative aerodynamic measures of flight efficiency of two bat species, one large-eared (Plecotus auritus) and one small-eared (Glossophaga soricina), flying freely in a wind tunnel. We find that the body drag of both species is higher than previously assumed and that the large-eared species has a higher body drag coefficient, but also produces relatively more ear/body lift than the small-eared species, in line with prior studies on model bats. The measured aerodynamic power of P. auritus was higher than predicted from the aerodynamic model, while the small-eared species aligned with predictions. The relatively higher power of the large-eared species results in lower optimal flight speeds and our findings support the notion of a trade-off between the acoustic benefits of large external ears and aerodynamic performance. The result of this trade-off would be the eco-morphological correlation in bat flight, with large-eared bats generally adopting slow-flight feeding strategies.


Assuntos
Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Orelha/anatomia & histologia , Voo Animal/fisiologia , Animais , Fenômenos Biomecânicos , Especificidade da Espécie
7.
J R Soc Interface ; 14(130)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28539482

RESUMO

Slotted wing tips of birds are commonly considered an adaptation to improve soaring performance, despite their presence in species that neither soar nor glide. We used particle image velocimetry to measure the airflow around the slotted wing tip of a jackdaw (Corvus monedula) as well as in its wake during unrestrained flight in a wind tunnel. The separated primary feathers produce individual wakes, confirming a multi-slotted function, in both gliding and flapping flight. The resulting multi-cored wingtip vortex represents a spreading of vorticity, which has previously been suggested as indicative of increased aerodynamic efficiency. Considering benefits of the slotted wing tips that are specific to flapping flight combined with the wide phylogenetic occurrence of this configuration, we propose the hypothesis that slotted wings evolved initially to improve performance in powered flight.


Assuntos
Movimentos do Ar , Corvos/anatomia & histologia , Corvos/fisiologia , Voo Animal/fisiologia , Asas de Animais/anatomia & histologia , Animais , Fenômenos Biomecânicos , Asas de Animais/fisiologia
8.
Sci Rep ; 6: 24886, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27118083

RESUMO

Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3-5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested.


Assuntos
Quirópteros/fisiologia , Orelha/fisiologia , Voo Animal , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Reologia
9.
J R Soc Interface ; 12(109): 20150357, 2015 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-26179990

RESUMO

Hovering means stationary flight at zero net forward speed, which can be achieved by animals through muscle powered flapping flight. Small bats capable of hovering typically do so with a downstroke in an inclined stroke plane, and with an aerodynamically active outer wing during the upstroke. The magnitude and time history of aerodynamic forces should be reflected by vorticity shed into the wake. We thus expect hovering bats to generate a characteristic wake, but this has until now never been studied. Here we trained nectar-feeding bats, Leptonycteris yerbabuenae, to hover at a feeder and using time-resolved stereoscopic particle image velocimetry in conjunction with high-speed kinematic analysis we show that hovering nectar-feeding bats produce a series of bilateral stacked vortex loops. Vortex visualizations suggest that the downstroke produces the majority of the weight support, but that the upstroke contributes positively to the lift production. However, the relative contributions from downstroke and upstroke could not be determined on the basis of the wake, because wake elements from down- and upstroke mix and interact. We also use a modified actuator disc model to estimate lift force, power and flap efficiency. Based on our quantitative wake-induced velocities, the model accounts for weight support well (108%). Estimates of aerodynamic efficiency suggest hovering flight is less efficient than forward flapping flight, while the overall energy conversion efficiency (mechanical power output/metabolic power) was estimated at 13%.


Assuntos
Quirópteros/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Animais
11.
J Exp Biol ; 218(Pt 5): 653-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25740899

RESUMO

Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace.


Assuntos
Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Voo Animal/fisiologia , Animais , Fenômenos Biomecânicos , Reologia , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
12.
Sci Rep ; 3: 3264, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24253180

RESUMO

The Leading Edge Vortex (LEV) is a universal mechanism enhancing lift in flying organisms. LEVs, generally illustrated as a single vortex attached to the wing throughout the downstroke, have not been studied quantitatively in freely flying insects. Previous findings are either qualitative or from flappers and tethered insects. We measure the flow above the wing of freely flying hawkmoths and find multiple simultaneous LEVs of varying strength and structure along the wingspan. At the inner wing there is a single, attached LEV, while at mid wing there are multiple LEVs, and towards the wingtip flow separates. At mid wing the LEV circulation is ~40% higher than in the wake, implying that the circulation unrelated to the LEV may reduce lift. The strong and complex LEV suggests relatively high flight power in hawmoths. The variable LEV structure may result in variable force production, influencing flight control in the animals.


Assuntos
Voo Animal , Mariposas/fisiologia , Animais
13.
Biol Open ; 1(12): 1226-38, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23259057

RESUMO

The morphology and kinematics of a flying animal determines the resulting aerodynamic lift through the regulation of the speed of the air moving across the wing, the wing area and the lift coefficient. We studied the detailed three-dimensional wingbeat kinematics of the bat, Leptonycteris yerbabuenae, flying in a wind tunnel over a range of flight speeds (0-7 m/s), to determine how factors affecting the lift production vary across flight speed and within wingbeats. We found that the wing area, the angle of attack and the camber, which are determinants of the lift production, decreased with increasing speed. The camber is controlled by multiple mechanisms along the span, including the deflection of the leg relative to the body, the bending of the fifth digit, the deflection of the leading edge flap and the upward bending of the wing tip. All these measures vary throughout the wing beat suggesting active or aeroelastic control. The downstroke Strouhal number, St(d), is kept relatively constant, suggesting that favorable flow characteristics are maintained during the downstroke, across the range of speeds studied. The St(d) is kept constant through changes in the stroke plane, from a strongly inclined stroke plane at low speeds to a more vertical stroke plane at high speeds. The mean angular velocity of the wing correlates with the aerodynamic performance and shows a minimum at the speed of maximum lift to drag ratio, suggesting a simple way to determine the optimal speed from kinematics alone. Taken together our results show the high degree of adjustments that the bats employ to fine tune the aerodynamics of the wings and the correlation between kinematics and aerodynamic performance.

14.
J R Soc Interface ; 9(75): 2745-8, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22593097

RESUMO

Flying insects typically possess two pairs of wings. In beetles, the front pair has evolved into short, hardened structures, the elytra, which protect the second pair of wings and the abdomen. This allows beetles to exploit habitats that would otherwise cause damage to the wings and body. Many beetles fly with the elytra extended, suggesting that they influence aerodynamic performance, but little is known about their role in flight. Using quantitative measurements of the beetle's wake, we show that the presence of the elytra increases vertical force production by approximately 40 per cent, indicating that they contribute to weight support. The wing-elytra combination creates a complex wake compared with previously studied animal wakes. At mid-downstroke, multiple vortices are visible behind each wing. These include a wingtip and an elytron vortex with the same sense of rotation, a body vortex and an additional vortex of the opposite sense of rotation. This latter vortex reflects a negative interaction between the wing and the elytron, resulting in a single wing span efficiency of approximately 0.77 at mid downstroke. This is lower than that found in birds and bats, suggesting that the extra weight support of the elytra comes at the price of reduced efficiency.


Assuntos
Besouros/fisiologia , Voo Animal/fisiologia , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia
15.
PLoS One ; 7(5): e37335, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22624018

RESUMO

Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances than bats.


Assuntos
Adaptação Biológica/fisiologia , Quirópteros/fisiologia , Voo Animal/fisiologia , Passeriformes/fisiologia , Movimentos do Ar , Animais , Fenômenos Biomecânicos , Pesos e Medidas Corporais , Modelos Lineares , Filogenia , Reologia , Especificidade da Espécie
16.
Biol Lett ; 8(4): 554-7, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22417792

RESUMO

Most hovering animals, such as insects and hummingbirds, enhance lift by producing leading edge vortices (LEVs) and by using both the downstroke and upstroke for lift production. By contrast, most hovering passerine birds primarily use the downstroke to generate lift. To compensate for the nearly inactive upstroke, weight support during the downstroke needs to be relatively higher in passerines when compared with, e.g. hummingbirds. Here we show, by capturing the airflow around the wing of a freely flying pied flycatcher, that passerines may use LEVs during the downstroke to increase lift. The LEV contributes up to 49 per cent to weight support, which is three times higher than in hummingbirds, suggesting that avian hoverers compensate for the nearly inactive upstroke by generating stronger LEVs. Contrary to other animals, the LEV strength in the flycatcher is lowest near the wing tip, instead of highest. This is correlated with a spanwise reduction of the wing's angle-of-attack, partly owing to upward bending of primary feathers. We suggest that this helps to delay bursting and shedding of the particularly strong LEV in passerines.


Assuntos
Voo Animal/fisiologia , Passeriformes/fisiologia , Asas de Animais/fisiologia , Movimentos do Ar , Animais , Fenômenos Biomecânicos/fisiologia , Peso Corporal , Especificidade da Espécie
17.
J R Soc Interface ; 9(67): 292-303, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21676971

RESUMO

Many small passerines regularly fly slowly when catching prey, flying in cluttered environments or landing on a perch or nest. While flying slowly, passerines generate most of the flight forces during the downstroke, and have a 'feathered upstroke' during which they make their wing inactive by retracting it close to the body and by spreading the primary wing feathers. How this flight mode relates aerodynamically to the cruising flight and so-called 'normal hovering' as used in hummingbirds is not yet known. Here, we present time-resolved fluid dynamics data in combination with wingbeat kinematics data for three pied flycatchers flying across a range of speeds from near hovering to their calculated minimum power speed. Flycatchers are adapted to low speed flight, which they habitually use when catching insects on the wing. From the wake dynamics data, we constructed average wingbeat wakes and determined the time-resolved flight forces, the time-resolved downwash distributions and the resulting lift-to-drag ratios, span efficiencies and flap efficiencies. During the downstroke, slow-flying flycatchers generate a single-vortex loop wake, which is much more similar to that generated by birds at cruising flight speeds than it is to the double loop vortex wake in hovering hummingbirds. This wake structure results in a relatively high downwash behind the body, which can be explained by the relatively active tail in flycatchers. As a result of this, slow-flying flycatchers have a span efficiency which is similar to that of the birds in cruising flight and which can be assumed to be higher than in hovering hummingbirds. During the upstroke, the wings of slowly flying flycatchers generated no significant forces, but the body-tail configuration added 23 per cent to weight support. This is strikingly similar to the 25 per cent weight support generated by the wing upstroke in hovering hummingbirds. Thus, for slow-flying passerines, the upstroke cannot be regarded as inactive, and the tail may be of importance for flight efficiency and possibly manoeuvrability.


Assuntos
Voo Animal/fisiologia , Passeriformes/fisiologia , Asas de Animais/fisiologia , Movimentos do Ar , Animais , Fenômenos Biomecânicos , Hidrodinâmica
18.
J R Soc Interface ; 8(63): 1418-28, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21367776

RESUMO

Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology.


Assuntos
Quirópteros/fisiologia , Voo Animal/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Feminino , Processamento de Imagem Assistida por Computador , Masculino , Especificidade da Espécie , Asas de Animais/anatomia & histologia
19.
J Exp Biol ; 213(Pt 12): 2142-53, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20511529

RESUMO

To obtain a full understanding of the aerodynamics of animal flight, the movement of the wings, the kinematics, needs to be connected to the wake left behind the animal. Here the detailed 3D wingbeat kinematics of bats, Glossophaga soricina, flying in a wind tunnel over a range of flight speeds (1-7 m s(-1)) was determined from high-speed video. The results were compared with the wake geometry and quantitative wake measurements obtained simultaneously to the kinematics. The wingbeat kinematics varied gradually with flight speed and reflected the changes observed in the wake of the bats. In particular, several of the kinematic parameters reflected the differences in the function of the upstroke at low and high flight speeds. At lower flight speeds the bats use a pitch-up rotation to produce a backward flick which creates thrust and some weight support. At higher speeds this mechanism disappears and the upstroke generates weight support but no thrust. This is reflected by the changes in e.g. angle of attack, span ratio, camber and downstroke ratio. We also determined how different parameters vary throughout a wingbeat over the flight speeds studied. Both the camber and the angle of attack varied over the wingbeat differently at different speeds, suggesting active control of these parameters to adjust to the changing aerodynamic conditions. This study of the kinematics strongly indicates that the flight of bats is governed by an unsteady high-lift mechanism at low flight speeds and points to differences between birds and bats.


Assuntos
Quirópteros/fisiologia , Voo Animal/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Feminino , Masculino , Comportamento Predatório/fisiologia , Asas de Animais/anatomia & histologia
20.
J R Soc Interface ; 7(42): 61-6, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19324669

RESUMO

Qualitative comparison of bird and bat wakes has demonstrated significant differences in the structure of the far wake. Birds have been found to have a unified vortex wake of the two wings, while bats have a more complex wake with gradients in the circulation along the wingspan, and with each wing generating its own vortex structure. Here, we compare quantitative measures of the circulation in the far wake of three bird and one bat species. We find that bats have a significantly stronger normalized circulation of the start vortex than birds. We also find differences in how the circulation develops during the wingbeat as demonstrated by the ratio of the circulation of the dominant start vortex and the total circulation of the same sense. Birds show a more prominent change with changing flight speed and a relatively weaker start vortex at minimum power speed than bats. We also find that bats have a higher normalized wake loading based on the start vortex, indicating higher relative induced drag and therefore less efficient lift generation than birds. Our results thus indicate fundamental differences in the aerodynamics of bird and bat flight that will further our understanding of the evolution of vertebrate flight.


Assuntos
Aves/fisiologia , Quirópteros/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Asas de Animais/fisiologia , Animais , Aves/classificação , Quirópteros/classificação , Simulação por Computador , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...