Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 5(12): e14205, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21151924

RESUMO

BACKGROUND: Glucagon-like peptide-1 (GLP-1) is recognized as an important regulator of glucose homeostasis. Efforts to utilize GLP-1 mimetics in the treatment of diabetes have yielded clinical benefits. A major hurdle for an effective oral therapy has been the difficulty of finding a non-peptidic GLP-1 receptor (GLP-1R) agonist. While its oral bioavailability still poses significant challenges, Boc5, one of the first such compounds, has demonstrated the attainment of GLP-1R agonism in diabetic mice. The present work was to investigate whether subchronic Boc5 treatment can restore glycemic control and induce sustainable weight loss in diet-induced obese (DIO) mice, an animal model of human obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: DIO mice were treated three times a week with Boc5 (0.3, 1 and 3 mg) for 12 weeks. Body weight, body mass index (BMI), food intake, fasting glucose, intraperitoneal glucose tolerance and insulin induced glucose clearance were monitored regularly throughout the treatment. Glucose-stimulated insulin secretion, ß-cell mass, islet size, body composition, serum metabolic profiles, lipogenesis, lipolysis, adipose hypertrophy and lipid deposition in the liver and muscle were also measured after 12 weeks of dosing. Boc5 dose-dependently reduced body weight, BMI and food intake in DIO mice. These changes were associated with significant decreases in fat mass, adipocyte hypertrophy and peripheral tissue lipid accumulation. Boc5 treatment also restored glycemic control through marked improvement of insulin sensitivity and normalization of ß-cell mass. Administration of Boc5 (3 mg) reduced basal but enhanced insulin-mediated glucose incorporation and noradrenaline-stimulated lipolysis in isolated adipocytes from obese mice. Furthermore, circulating leptin, adiponectin, triglyceride, total cholesterol, nonesterified fatty acid and high-density lipoprotein/low-density lipoprotein ratio were normalized to various extents by Boc5 treatment. CONCLUSIONS/SIGNIFICANCE: Boc5 may produce metabolic benefits via multiple synergistic mechanisms and may represent an attractive tool for therapeutic intervention of obesity and diabetes, by means of non-peptidic GLP-1R agonism.


Assuntos
Dieta , Resistência à Insulina , Obesidade/tratamento farmacológico , Receptores de Glucagon/agonistas , Adipócitos/citologia , Animais , Índice de Massa Corporal , Peso Corporal , Ciclobutanos/metabolismo , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucose/metabolismo , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Tamanho do Órgão
2.
Eur J Pharmacol ; 597(1-3): 92-101, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-18789919

RESUMO

Adenosine acting at adenosine A1 receptors is considered to be one major regulator of adipose tissue physiology. We have examined the role of adenosine and its interactions with insulin in adipose tissue by using A1R knock out (-/-) mice. Removal of endogenous adenosine with adenosine deaminase caused lipolysis in A1R (+/+), but not A1R (-/-) adipocytes. The adenosine analogue, 2-chloroadenosine, inhibited noradrenaline-stimulated lipolysis and cAMP accumulation in A1R (+/+), but not in A1R (-/-) adipocytes. Insulin reduces lipolysis and cAMP via another mechanism than adenosine and acted additively, but not synergistically, with adenosine. Plasma levels of free fatty acids, glycerol and triglycerides were significantly lower in A1R (+/+) than in A1R (-/-) mice after administration of an adenosine analogue. 2-chloroadenosine induced lipogenesis in presence of insulin in A1R (+/+), but not in A1R (-/-) adipocytes. There were no changes in mRNA levels for several genes involved in fat synthesis in adipose tissue between genotypes. Body weight was similar in young A1R (+/+) and A1R (-/-) mice, but old male A1R (-/-) mice were heavier than wild type controls. In conclusion, adenosine inhibits lipolysis via the adenosine A1 receptor and other adenosine receptors play no significant role. Adenosine and insulin mediate additive but not synergistic antilipolytic effects and 2-chloroadenosine stimulates lipogenesis via adenosine A1 receptors. Thus deletion of adenosine A1 receptors should increase lipolysis and decrease lipogenesis, but in fact an increased fat mass was observed, indicating that other actions of adenosine A1 receptors, possibly outside adipose tissue, are also important.


Assuntos
Adenosina/metabolismo , Tecido Adiposo/metabolismo , Insulina/metabolismo , Lipogênese , Lipólise , Receptor A1 de Adenosina/metabolismo , 2-Cloroadenosina/farmacologia , Agonistas do Receptor A1 de Adenosina , Adenosina Desaminase/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Peso Corporal , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Glucose/metabolismo , Lipídeos/sangue , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Norepinefrina/metabolismo , Receptor A1 de Adenosina/deficiência , Receptor A1 de Adenosina/genética , Transdução de Sinais
3.
Biochem Pharmacol ; 74(11): 1628-35, 2007 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-17869224

RESUMO

Adenosine influences metabolism and the adenosine receptor antagonist caffeine decreases the risk of type 2 diabetes. In this study the metabolic role of one adenosine receptor subtype, the adenosine A(1)R, was evaluated in mice lacking this receptor [A(1)R (-/-)]. The HbA1c levels and body weight were not significantly different between wild type [A(1)R (+/+)] and A(1)R (-/-) mice (3-4 months) fed normal lab chow. At rest, plasma levels of glucose, insulin and glucagon were similar in both genotypes. Following glucose injection, glucose tolerance was not appreciably altered in A(1)R (-/-) mice. Glucose injection induced sustained increases in plasma insulin and glucagon levels in A(1)R (-/-) mice, whereas A(1)R (+/+) control mice reacted with the expected transient increase in insulin and decrease in glucagon levels. Pancreas perfusion experiments showed that A(1)R (-/-) mice had a slightly higher basal insulin secretion than A(1)R (+/+) mice. The first phase insulin secretion (initiated with 16.7 mM glucose) was of the same magnitude in both genotypes, but the second phase was significantly enhanced in the A(1)R (-/-) pancreata compared with A(1)R (+/+). Insulin- and contraction-mediated glucose uptake in skeletal muscle were not significantly different between in A(1)R (-/-) and A(1)R (+/+) mice. All adenosine receptors were expressed at mRNA level in skeletal muscle in A(1)R (+/+) mice and the mRNA A(2A)R, A(2B)R and A(3)R levels were similar in A(1)R (-/-) and A(1)R (+/+) mice. In conclusion, the A(1)R minimally affects muscle glucose uptake, but is important in regulating pancreatic islet function.


Assuntos
Glucagon/metabolismo , Insulina/metabolismo , Receptor A1 de Adenosina/deficiência , Animais , Glicemia/metabolismo , Peso Corporal , Desoxiglucose/administração & dosagem , Desoxiglucose/metabolismo , Desoxiglucose/farmacocinética , Feminino , Genótipo , Glucagon/sangue , Glucose/administração & dosagem , Glucose/metabolismo , Glucose/farmacocinética , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/metabolismo , Técnicas In Vitro , Injeções Intraperitoneais , Injeções Intravenosas , Insulina/sangue , Insulina/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor A1 de Adenosina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...