Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Prev Med ; 13: 132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452474

RESUMO

Background: Choosing the right temperature probe location is important, especially in VLBW infants. We aimed to determine five points of the skin surface and compare them with the axillary temperature of potentially suitable locations as well as the best location for skin probe placement. Methods: In a cross-sectional study, 400 neonates with gestational age above 26 weeks were enrolled. The axillary temperature was measured using a mercury thermometer at 0 and 30 min. Then, the body temperature was measured using a surface probe on the five skin areas, including the thoracic area, epigastric region, RUQ area, hypogastric area, and left flanking area. Data recorded were compared with the axillary temperature at 0 and 30 min. Results: Mean neonatal axillary temperatures at 0 and 30 min were 36.60 and 36.61, respectively. The mean temperature was recorded using skin probes at 0 and 30 min in the thoracic region (36.34 and 36.35) in the epigastric region (36.45 and 36.47), in the RUQ region (36.50 and 36.52), in the Flank region (36.26 and 36.20), and in the hypogastric region (36.24 and 36.26). The lowest mean difference recorded by surface probes with the temperature measured by the thermometer in the axillary region was related to the surface probe RUQ (mean difference: 0.1 and 0.09), which was not statistically significant. Conclusions: RUQ area probe has the lowest difference with the temperature calculated using the thermometer in the axillary region and is the best place to put the skin probe for prevention of hypo/hyperthermia.

2.
Sci Rep ; 11(1): 17339, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462517

RESUMO

The Late Triassic Carnian Pluvial Episode (CPE) was a time of biological turnover and environmental perturbations. Within the CPE interval, C-isotope and sedimentary records indicate multiple pulses of depleted carbon into the atmosphere-ocean system linked to discrete enhancements of the hydrological cycle. Data suggest a similar cascade of events to other extinctions, including being potentially driven by emplacement of a large igneous province (LIP). The age of the Wrangellia LIP overlaps that of the CPE, but a direct link between volcanism and the pulsed CPE remains elusive. We present sedimentary Hg concentrations from Western Tethys successions to investigate volcanic activity through the previously established CPE global negative C-isotope excursions (NCIEs). Higher Hg concentrations and Hg/TOC are recorded just before and during NCIEs and siliciclastic inputs. The depositional settings suggest volcanic Hg inputs into the basins over the NCIEs rather than increases of Hg drawdown or riverine transport. Differences in Hg and Hg/TOC signals between the basins might be linked to coeval LIP style or the temporal resolution of the sedimentary successions. Overall, our new data provide support for a link between pulses of Wrangellia LIP volcanism, NCIEs, and humid phases that mark the CPE in the Western Tethys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...