Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 162: 213918, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38880016

RESUMO

Multifunctional wound dressings based on hydrogels are an efficacious and practicable strategy in therapeutic processes and accelerated chronic wound healing. Here, copper (Cu) nanoparticles were added to chitosan/sodium alginate (CS/SA) hydrogels to improve the antibacterial properties of the prepared wound dressings. Due to the super-hydrophobicity of Cu nanoparticles, polyethylene glycol (PEG) was used as a surfactant, and then added to the CS/SA-based hydrogels. The CS/SA/Cu hydrogels were synthesized with 0, 2, 3.5, and 5 wt% Cu nanoparticles. The structural and morphological properties in presence of PEG were evaluated using Fourier-transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM). The biodegradation and swelling properties of the hydrogels were investigated in phosphate buffer saline (PBS) at 37 °C for up to 30 days. Cell viability and adhesion, as well as antibacterial behavior, were investigated via MTT assay, FESEM, and disk diffusion method, respectively. The obtained results showed that PEG provided new intra- and intermolecular bonds that affected significantly the hydrogels' degradation and swelling ratio, which increased up to ~1200 %. Cell viability reached ~110 % and all samples showed remarkable antibacterial behavior when CS/SA/Cu containing 2 wt% was introduced. This study provided new insights regarding the use of PEG as a surfactant for Cu nanoparticles in CS/SA hydrogel wound dressing, ultimately affecting the chemical bonding and various properties of the prepared hydrogels.


Assuntos
Alginatos , Antibacterianos , Bandagens , Quitosana , Cobre , Tensoativos , Cicatrização , Quitosana/química , Quitosana/farmacologia , Alginatos/química , Alginatos/farmacologia , Cobre/química , Cobre/farmacologia , Tensoativos/química , Tensoativos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização/efeitos dos fármacos , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Sobrevivência Celular/efeitos dos fármacos
2.
Acta Biomater ; 153: 38-67, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126911

RESUMO

Silkworm silk protein fibroin and spider silk spidroin are known biocompatible and natural biodegradable polymers in biomedical applications. The presence of ß-sheets in silk fibroin and spider spidroin conformation improves their mechanical properties. The strength and toughness of pure recombinant silkworm fibroin and spidroin are relatively low due to reduced molecular weight. Hence, blending is the foremost approach of recent studies to optimize silk fibroin and spidroin's mechanical properties. As summarised in the present review, numerous research investigations evaluate the blending of natural and synthetic polymers. The effects of blending silk fibroin and spidroin with natural and synthetic polymers on the mechanical properties are discussed in this review article. Indeed, combining natural and synthetic polymers with silk fibroin and spidroin changes their conformation and structure, fine-tuning the blends' mechanical properties. STATEMENT OF SIGNIFICANCE: Silkworm and spider silk proteins (silk fibroin and spidroin) are biocompatible and biodegradable natural polymers having different types of biomedical applications. Their mechanical and biological properties may be tuned through various strategies such as blending, conjugating and cross-linking. Blending is the most common method to modify fibroin and spidroin properties on demand. This review article aims to categorize and evaluate the effects of blending fibroin and spidroin with different natural and synthetic polymers. Increased polarity and hydrophilicity end to hydrogen bonding triggered conformational change in fibroin and spidroin blends. The effect of polarity and hydrophilicity of the blending compound has been discussed in relation to the structural and mechanical properties of the biomaterials. These effects have been categorized to combinatorial, synergistic and indirect impact on silk fibroin and spidroin properties. This outlook guides us to choose the blending compounds mindfully as this mixing affects the biochemical and biophysical characteristics of the biomaterials.


Assuntos
Bombyx , Fibroínas , Animais , Fibroínas/química , Seda/química , Materiais Biocompatíveis/química , Polímeros/química
3.
Mater Sci Eng C Mater Biol Appl ; 82: 265-276, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29025657

RESUMO

It is known that Fluoride ions strongly affect bone mineralization and formation. In the present study, the engineered bone tissue scaffolds are fabricated using silk fibroin (SF) and flouridated TiO2 nanoparticles. TiO2 nanoparticles are modified by fluoride ions, and different levels (0, 5, 10, 15 and 20wt%) of the fluoridated TiO2 nanoparticles (TiO2-F) were subsequently added to the SF matrix through phase separation method to prepare silk fibroin/flouridated TiO2 nanocomposite scaffolds (SF/TiO2-F). Phase structure, functional groups, morphology and mechanical properties of the obtained scaffolds were evaluated by X-ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and compressive testing, respectively. In vitro degradation studies of scaffolds were performed by incubating the samples in phosphate buffered saline (PBS) at 37°C and pH7.4 for 30days. Additionally, the bioactivity of scaffolds was estimated in a simulated body fluid (SBF) buffered at 37°C and pH7.4 for 28days. Moreover, MTT assay was used to confirm the biocompatibility of the scaffolds using human like SaOS-2 osteoblast cell line for 1, 3 and 5days. The obtained results indicated that the mechanical properties of scaffolds have been improved by increasing the TiO2-F amount up to 15wt%. However, a detrimental effect was observed by a further increase in the TiO2-F content. The bioactivity of SF/TiO2-F nanocomposite scaffolds was promoted by flouridation of TiO2. Furthermore, cell cytotoxicity results demonstrated that the SF/TiO2-F nanocomposite scaffolds are nontoxic to osteoblasts. The cell fixation results after 3days of incubation revealed that the cell attachment and spreading on SF/TiO2-F nanocomposite scaffolds are improved with respect to SF/TiO2 nanocomposite scaffolds control sample.


Assuntos
Materiais Biocompatíveis/química , Fibroínas/química , Nanocompostos/química , Titânio/química , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Força Compressiva , Halogenação , Humanos , Microscopia Eletrônica de Varredura , Porosidade , Seda/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...