Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(26): 67919-67940, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37131007

RESUMO

Municipal wastewater has been considered as one of the largest contributors and carriers of microplastics to the aquatic environment. However, the various residential activities that generate municipal wastewater are equally significant whenever the source of microplastics in aquatic system is accounted. However, so far, only municipal wastewater has received wide attention in previous review articles. Hence, this review article is written to address this gap by highlighting, firstly, the chances of microplastics arising from the usage of personal care products (PCPs), laundry washing, face masks, and other potential sources. Thereafter, the various factors influencing the generation and intensity of indoor microplastic pollution and the evidence available on the possibility of microplastic inhalation by humans and pet animals are explained. Followed by that, the removal efficiency of microplastics observed in wastewater treatment plants, the fate of microplastics present in the effluent and biosolids, and their impact on aquatic and soil environment are explored. Furthermore, the impact of aging on the characteristics of microsized plastics has been explored. Finally, the influence of age and size of microplastics on the toxicity effects and the factors impacting the retention and accumulation of microplastics in aquatic species are reviewed. Furthermore, the prominent pathway of microplastics into the human body and the studies available on the toxicity effects observed in human cells upon exposure to microplastics of different characteristics are explored.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Plásticos , Águas Residuárias , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
Sci Total Environ ; 883: 163479, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37068671

RESUMO

Textile production is one of the main sources of freshwater consumption by industries worldwide. In addition, according to the world bank, 20 % of the wastewater generated globally is caused by textile wet-processing. Textile wet-processing includes the processes in textile production where garments are dyed or given the final functions like water-repellency. Several thousand chemicals were used in this process, some of which are highly toxic. Discharging untreated or insufficiently treated wastewater in water bodies results in high pollution levels, severely impacting the environment and human health. Especially in textile-producing countries like India, environmental pollution and water consumption from textile wet-processing have severe impacts. Next to the high volume of chemicals used in textile production, the high salt concentration in textile wastewater also poses a challenge and is critical for freshwater systems. Moreover, textile wastewater is one of the most difficult to treat wastewater. Currently, used treatment technologies do not meet the requirements to treat textile wastewater. Therefore, the further development of efficient treatment technologies for textile wastewater is critically important. Hence, in the interdisciplinary project, effect-based monitoring demonstrates the efficiency of electrically-driven water treatment processes to remove salts and micropollutants from process water (EfectroH2O), a low-energy Zero Liquid Discharge (ZLD) textile wastewater treatment technology is being developed consisting of a combination of capacitive deionization (CDI) and advanced oxidation processes (AOP). In addition to treatment technology development, methods for evaluating the efficiency of treatment technologies also need to be improved. Currently, mainly physicochemical parameters such as pH, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) are tested worldwide to check water quality. However, these methods are insufficient to make a statement about the toxic potential of such complex mixtures as textile wastewater. Therefore, also next to chemical analyses, effect-based methods (EBM) are used to verify the treated wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...