Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofouling ; 39(8): 800-815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37853689

RESUMO

Bacterial pathogenesis involves complex mechanisms contributing to virulence and persistence of infections. Understanding the multifactorial nature of bacterial infections is crucial for developing effective interventions. The present study investigated the efficacy of indole-3-acetic acid (IAA) against Pseudomonas aeruginosa with various end points including antibacterial activity, minimum inhibitory concentration (MIC), virulence factor production, biofilm inhibition, bacterial cell detachment, and viability assays. Results showed significant biofilm inhibition, bacterial cell detachment, and modest effects on bacterial viability. Microscopic analysis confirmed the disintegrated biofilm matrix, supporting the inhibitory effect of IAA. Additionally, molecular docking studies revealed potential mechanisms of action through active bond interactions between IAA and virulence proteins. These findings highlight IAA as an effective antibiofilm agent against P. aeruginosa.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Virulência , Simulação de Acoplamento Molecular
2.
J Appl Genet ; 56(3): 381-91, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25534541

RESUMO

Pathogenic organisms, causes of various infectious diseases, possess a rich repository of antigenic proteins that engender an immune response in a host. These types of diseases are usually treated with the use of pharmaceuticals; unfortunately, many of these also have a potential to induce fatal side effects, especially allergic responses in the diseased host. In addition, many pathogens evolve (by selective survival) single or multi-drug resistance (MDR). Therefore, a means to prevent the host from becoming susceptible to the pathogen from the onset, rather than trying to devise pharmacologic protocols to treat an ongoing infection, are increasingly seen as desirable to reduce the incidence of infectious diseases altogether. To this end, cost-effective development and use of "safe" vaccines is key. This paper provides an overview on the new and expanding area of computational vaccinology and a brief background on pathogen antigenicity, identification of pathogen-specific antigens, and screening of candidate antigens using various tools and databases developed in the recent past.


Assuntos
Biologia Computacional , Vacinas/química , Adjuvantes Imunológicos/química , Bases de Dados Factuais
3.
Appl Biochem Biotechnol ; 167(5): 1340-50, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22434357

RESUMO

Leishmaniasis is a group of diseases with a spectrum of clinical manifestations ranging from cutaneous ulcers to visceral leishmaniasis, which results from the bite of an infected sandfly to human. Attempts to develop an effective vaccine have been shown to be feasible but no vaccine is in active clinical use. This study adopts a Reverse Vaccinology approach to identify common vaccine candidates from both highly pathogenic species Leishmania major and Leishmania infantum. Total proteome of both species were compared to identify common proteins, which are further taken for sub-cellular localization and transmembrane helices prediction. Plasma membrane proteins having only one transmembrane helix were first identified and analyzed which are non-homologous in human and mouse in order to avoid molecular mimicry with other proteins. Selected proteins were analyzed for their binding efficiency to both major histocompatibility complex (MHC) class I and class II alleles. As a result, 19 potential epitopes are screened in this study using different approaches, which can be further verified through in vivo experiments in MHC compatible animal models. This study demonstrates that Reverse Vaccinology approach has potential in discovering various immunogenic antigens from in silico analysis of pathogen's genome or proteome instead of culturing the whole organism by conventional methods.


Assuntos
Biologia Computacional , Leishmania/imunologia , Vacinas/imunologia , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinas/química , Vacinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...