Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pain ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968400

RESUMO

ABSTRACT: It is still unclear how and why some patients develop painful and others painless polyneuropathy. The aim of this study was to identify multiple factors associated with painful polyneuropathies (NeuP). A total of 1181 patients of the multicenter DOLORISK database with painful (probable or definite NeuP) or painless (unlikely NeuP) probable or confirmed neuropathy were investigated clinically, with questionnaires and quantitative sensory testing. Multivariate logistic regression including all variables (demographics, medical history, psychological symptoms, personality items, pain-related worrying, life-style factors, as well as results from clinical examination and quantitative sensory testing) and machine learning was used for the identification of predictors and final risk prediction of painful neuropathy. Multivariate logistic regression demonstrated that severity and idiopathic etiology of neuropathy, presence of chronic pain in family, Patient-Reported Outcomes Measurement Information System Fatigue and Depression T-Score, as well as Pain Catastrophizing Scale total score are the most important features associated with the presence of pain in neuropathy. Machine learning (random forest) identified the same variables. Multivariate logistic regression archived an accuracy above 78%, random forest of 76%; thus, almost 4 out of 5 subjects can be classified correctly. This multicenter analysis shows that pain-related worrying, emotional well-being, and clinical phenotype are factors associated with painful (vs painless) neuropathy. Results may help in the future to identify patients at risk of developing painful neuropathy and identify consequences of pain in longitudinal studies.

2.
BMC Med Inform Decis Mak ; 22(1): 144, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35644620

RESUMO

BACKGROUND: To improve the treatment of painful Diabetic Peripheral Neuropathy (DPN) and associated co-morbidities, a better understanding of the pathophysiology and risk factors for painful DPN is required. Using harmonised cohorts (N = 1230) we have built models that classify painful versus painless DPN using quality of life (EQ5D), lifestyle (smoking, alcohol consumption), demographics (age, gender), personality and psychology traits (anxiety, depression, personality traits), biochemical (HbA1c) and clinical variables (BMI, hospital stay and trauma at young age) as predictors. METHODS: The Random Forest, Adaptive Regression Splines and Naive Bayes machine learning models were trained for classifying painful/painless DPN. Their performance was estimated using cross-validation in large cross-sectional cohorts (N = 935) and externally validated in a large population-based cohort (N = 295). Variables were ranked for importance using model specific metrics and marginal effects of predictors were aggregated and assessed at the global level. Model selection was carried out using the Mathews Correlation Coefficient (MCC) and model performance was quantified in the validation set using MCC, the area under the precision/recall curve (AUPRC) and accuracy. RESULTS: Random Forest (MCC = 0.28, AUPRC = 0.76) and Adaptive Regression Splines (MCC = 0.29, AUPRC = 0.77) were the best performing models and showed the smallest reduction in performance between the training and validation dataset. EQ5D index, the 10-item personality dimensions, HbA1c, Depression and Anxiety t-scores, age and Body Mass Index were consistently amongst the most powerful predictors in classifying painful vs painless DPN. CONCLUSIONS: Machine learning models trained on large cross-sectional cohorts were able to accurately classify painful or painless DPN on an independent population-based dataset. Painful DPN is associated with more depression, anxiety and certain personality traits. It is also associated with poorer self-reported quality of life, younger age, poor glucose control and high Body Mass Index (BMI). The models showed good performance in realistic conditions in the presence of missing values and noisy datasets. These models can be used either in the clinical context to assist patient stratification based on the risk of painful DPN or return broad risk categories based on user input. Model's performance and calibration suggest that in both cases they could potentially improve diagnosis and outcomes by changing modifiable factors like BMI and HbA1c control and institute earlier preventive or supportive measures like psychological interventions.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Humanos , Teorema de Bayes , Estudos Transversais , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/epidemiologia , Hemoglobinas Glicadas , Aprendizado de Máquina , Dor , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA