Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
J Patient Exp ; 11: 23743735241257385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827224

RESUMO

Telehealth clinics have been used in many specialities, including neurosurgery, to improve access for patients in rural communities. The introduction of nurse navigators involved with the patient before, during and after the clinic was evaluated. Clinics were held in a rural hospital with a nurse navigator present in the clinic with the patient, and the physician consulting remotely. A patient satisfaction survey and audit were conducted following ten telehealth clinics. Twenty-one new patients were able to be contacted out of 31 (68%) with an 11 question structured survey. Eighteen out of 21 (86%) stated they were satisfied with the quality of the clinic compared with an in-person clinic. Overall satisfaction scores of 7-10 were scored by 18/21 patients (86%) on a scale of 1-10. An estimated 10785 km of travel was saved for patients going to a rural hospital clinic rather than the neurosurgical centre. This study shows that the supportive role of nurse navigators throughout the patient telehealth clinic pathway merits further continuing evaluation.

2.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895321

RESUMO

Glaucoma is a leading cause of irreversible blindness worldwide. Toll-like receptor 4 (TLR4) is a pattern-recognition transmembrane receptor that induces neuroinflammatory processes in response to injury. Tlr4 is highly expressed in ocular tissues and is known to modulate inflammatory processes in both anterior and posterior segment tissues. TLR4 activation can lead to mitochondrial dysfunction and metabolic deficits in inflammatory disorders. Due to its effects on inflammation and metabolism, TLR4 is a candidate to participate in glaucoma pathogenesis. It has been suggested as a therapeutic target based on studies using acute models, such as experimentally raising IOP to ischemia-inducing levels. Nevertheless, its role in chronic glaucoma needs further evaluation. In the current study, we investigated the role of TLR4 in an inherited mouse model of chronic glaucoma, DBA/2J. To do this, we analyzed the effect of Tlr4 knockout (Tlr4 -/-) on glaucoma-associated phenotypes in DBA/2J mice. Our studies found no significant differences in intraocular pressure, iris disease, or glaucomatous progression in Tlr4 -/- compared to Tlr4 +/+ DBA/2J mice. These data do not identify a role for TLR4 in this chronic glaucoma, but further research is warranted to understand its role in other glaucoma models and different genetic contexts.

3.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37886472

RESUMO

Schlemm's canal (SC) is central in intraocular pressure regulation but requires much characterization. It has distinct inner and outer walls, each composed of Schlemm's canal endothelial cells (SECs) with different morphologies and functions. Recent transcriptomic studies of the anterior segment added important knowledge, but were limited in power by SEC numbers or did not focus on SC. To gain a more comprehensive understanding of SC biology, we performed bulk RNA sequencing on C57BL/6J SC, blood vessel, and lymphatic endothelial cells from limbal tissue (~4500 SECs). We also analyzed mouse limbal tissues by single-cell and single-nucleus RNA sequencing (C57BL/6J and 129/Sj strains), successfully sequencing 903 individual SECs. Together, these datasets confirm that SC has molecular characteristics of both blood and lymphatic endothelia with a lymphatic phenotype predominating. SECs are enriched in pathways that regulate cell-cell junction formation pointing to the importance of junctions in determining SC fluid permeability. Importantly, and for the first time, our analyses characterize 3 molecular classes of SECs, molecularly distinguishing inner wall from outer wall SECs and discovering two inner wall cell states that likely result from local environmental differences. Further, and based on ligand and receptor expression patterns, we document key interactions between SECs and cells of the adjacent trabecular meshwork (TM) drainage tissue. Also, we present cell type expression for a collection of human glaucoma genes. These data provide a new molecular foundation that will enable the functional dissection of key homeostatic processes mediated by SECs as well as the development of new glaucoma therapeutics.

4.
bioRxiv ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37886565

RESUMO

The exact sites and molecules that determine resistance to aqueous humor drainage and control intraocular pressure (IOP) need further elaboration. Proposed sites include the inner wall of Schlemms's canal and the juxtacanalicular trabecular meshwork ocular drainage tissues. The adherens junctions (AJs) of Schlemm's canal endothelial cells (SECs) must both preserve the blood-aqueous humor (AQH) barrier and be conducive to AQH drainage. How homeostatic control of AJ permeability in SC occurs and how such control impacts IOP is unclear. We hypothesized that mechano-responsive phosphorylation of the junctional molecule VE-CADHERIN (VEC) by SRC family kinases (SFKs) regulates the permeability of SEC AJs. We tested this by clamping IOP at either 16 mmHg, 25 mmHg, or 45 mmHg in mice and then measuring AJ permeability and VEC phosphorylation. We found that with increasing IOP: 1) SEC AJ permeability increased, 2) VEC phosphorylation was increased at tyrosine-658, and 3) SFKs were activated at the AJ. Among the two SFKs known to phosphorylate VEC, FYN, but not SRC, localizes to the SC. Furthermore, FYN mutant mice had decreased phosphorylation of VEC at SEC AJs, dysregulated IOP, and reduced AQH outflow. Together, our data demonstrate that increased IOP activates FYN in the inner wall of SC, leading to increased phosphorylation of AJ VEC and, thus, decreased resistance to AQH outflow. These findings support a crucial role of mechanotransduction signaling in IOP homeostasis within SC in response to IOP. These data strongly suggest that the inner wall of SC partially contributes to outflow resistance.

5.
BMJ Qual Saf ; 32(5): 286-295, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36746617

RESUMO

BACKGROUND: Poor translation of clinical practice guidelines (CPGs) into clinical practice is a barrier to the provision of consistent and high-quality evidence-based care. The objective was to systematically review the roles and effectiveness of knowledge brokers (KBs) for translating CPGs in health-related settings. METHODS: MEDLINE, Embase, PsycINFO and CINAHL Plus were searched from 2014 to June 2022. Randomised controlled trials (RCTs), controlled and uncontrolled preintervention and postintervention studies involving KBs, either alone or as part of a multicomponent intervention, that reported quantitative postintervention changes in guideline implementation in a healthcare setting were included. A KB was defined as an intermediary who facilitated knowledge translation by acting in at least two of the following core roles: knowledge manager, linkage agent or capacity builder. Specific activities undertaken by KBs were deductively coded to the three core roles, then common activities were inductively grouped. Screening, data extraction, quality assessment and coding were performed independently by two authors. RESULTS: 16 studies comprising 6 RCTs, 8 uncontrolled precomparisons-postcomparisons, 1 controlled precomparison-postcomparison and 1 interrupted time series were included. 14 studies (88%) were conducted in hospital settings. Knowledge manager roles included creating and distributing guideline material. Linkage agent roles involved engaging with internal and external stakeholders. Capacity builder roles involved audit and feedback and educating staff. KBs improved guideline adherence in 10 studies (63%), had mixed impact in 2 studies (13%) and no impact in 4 studies (25%). Half of the RCTs showed KBs had no impact on guideline adherence. KBs acted as knowledge managers in 15 (94%) studies, linkage agents in 11 (69%) studies and capacity builders in all studies. CONCLUSION: Knowledge manager and capacity builder roles were more frequently studied than linkage agent roles. KBs had mixed impact on translating CPGs into practice. Further RCTs, including those in non-hospital settings, are required. PROSPERO REGISTRATION NUMBER: CRD42022340365.


Assuntos
Atenção à Saúde , Humanos , Análise de Séries Temporais Interrompida
6.
Neuron ; 111(1): 49-64.e5, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36351424

RESUMO

In albinism, aberrations in the ipsi-/contralateral retinal ganglion cell (RGC) ratio compromise the functional integrity of the binocular circuit. Here, we focus on the mouse ciliary margin zone (CMZ), a neurogenic niche at the embryonic peripheral retina, to investigate developmental processes regulating RGC neurogenesis and identity acquisition. We found that the mouse ventral CMZ generates predominantly ipsilaterally projecting RGCs, but this output is altered in the albino visual system because of CyclinD2 downregulation and disturbed timing of the cell cycle. Consequently, albino as well as CyclinD2-deficient pigmented mice exhibit diminished ipsilateral retinogeniculate projection and poor depth perception. In albino mice, pharmacological stimulation of calcium channels, known to upregulate CyclinD2 in other cell types, augmented CyclinD2-dependent neurogenesis of ipsilateral RGCs and improved stereopsis. Together, these results implicate CMZ neurogenesis and its regulators as critical for the formation and function of the mammalian binocular circuit.


Assuntos
Albinismo , Retina , Animais , Camundongos , Albinismo/metabolismo , Divisão Celular , Mamíferos , Neurogênese/fisiologia , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Vias Visuais
7.
Langmuir ; 38(38): 11691-11698, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36120896

RESUMO

Solid-liquid interfaces are of significant importance in a multitude of geochemical and technological fields. More specifically, the solvation structure plays a decisive role in the properties of the interfaces. Atomic force microscopy (AFM) has been used to resolve the interfacial hydration structure in the presence and absence of ions. Despite many studies investigating the calcite-water interface, the impact of ions on the hydration structure at this interface has rarely been studied. Here, we investigate the calcite-water interface at various concentrations (ranging from 0 to 5 M) of rubidium chloride (RbCl) using three-dimensional atomic force microscopy (3D AFM). We present molecularly resolved images of the hydration structure at the interface. Interestingly, the characteristic pattern of the hydration structure appears similar regardless of the RbCl concentration. The presence of the ions is detected in an indirect manner by more frequent contrast changes and slice displacements.

8.
Lancet Respir Med ; 10(10): 937-948, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35777416

RESUMO

BACKGROUND: Among patients meeting diagnostic criteria for idiopathic pulmonary arterial hypertension (IPAH), there is an emerging lung phenotype characterised by a low diffusion capacity for carbon monoxide (DLCO) and a smoking history. The present study aimed at a detailed characterisation of these patients. METHODS: We analysed data from two European pulmonary hypertension registries, COMPERA (launched in 2007) and ASPIRE (from 2001 onwards), to identify patients diagnosed with IPAH and a lung phenotype defined by a DLCO of less than 45% predicted and a smoking history. We compared patient characteristics, response to therapy, and survival of these patients to patients with classical IPAH (defined by the absence of cardiopulmonary comorbidities and a DLCO of 45% or more predicted) and patients with pulmonary hypertension due to lung disease (group 3 pulmonary hypertension). FINDINGS: The analysis included 128 (COMPERA) and 185 (ASPIRE) patients with classical IPAH, 268 (COMPERA) and 139 (ASPIRE) patients with IPAH and a lung phenotype, and 910 (COMPERA) and 375 (ASPIRE) patients with pulmonary hypertension due to lung disease. Most patients with IPAH and a lung phenotype had normal or near normal spirometry, a severe reduction in DLCO, with the majority having no or a mild degree of parenchymal lung involvement on chest computed tomography. Patients with IPAH and a lung phenotype (median age, 72 years [IQR 65-78] in COMPERA and 71 years [65-76] in ASPIRE) and patients with group 3 pulmonary hypertension (median age 71 years [65-77] in COMPERA and 69 years [63-74] in ASPIRE) were older than those with classical IPAH (median age, 45 years [32-60] in COMPERA and 52 years [38-64] in ASPIRE; p<0·0001 for IPAH with a lung phenotype vs classical IPAH in both registries). While 99 (77%) patients in COMPERA and 133 (72%) patients in ASPIRE with classical IPAH were female, there was a lower proportion of female patients in the IPAH and a lung phenotype cohort (95 [35%] COMPERA; 75 [54%] ASPIRE), which was similar to group 3 pulmonary hypertension (336 [37%] COMPERA; 148 [39%] ASPIRE]). Response to pulmonary arterial hypertension therapies at first follow-up was available from COMPERA. Improvements in WHO functional class were observed in 54% of patients with classical IPAH, 26% of patients with IPAH with a lung phenotype, and 22% of patients with group 3 pulmonary hypertension (p<0·0001 for classical IPAH vs IPAH and a lung phenotype, and p=0·194 for IPAH and a lung phenotype vs group 3 pulmonary hypertension); median improvements in 6 min walking distance were 63 m, 25 m, and 23 m for these cohorts respectively (p=0·0015 for classical IPAH vs IPAH and a lung phenotype, and p=0·64 for IPAH and a lung phenotype vs group 3 pulmonary hypertension), and median reductions in N-terminal-pro-brain-natriuretic-peptide were 58%, 27%, and 16% respectively (p=0·0043 for classical IPAH vs IPAH and a lung phenotype, and p=0·14 for IPAH and a lung phenotype vs group 3 pulmonary hypertension). In both registries, survival of patients with IPAH and a lung phenotype (1 year, 89% in COMPERA and 79% in ASPIRE; 5 years, 31% in COMPERA and 21% in ASPIRE) and group 3 pulmonary hypertension (1 year, 78% in COMPERA and 64% in ASPIRE; 5 years, 26% in COMPERA and 18% in ASPIRE) was worse than survival of patients with classical IPAH (1 year, 95% in COMPERA and 98% in ASPIRE; 5 years, 84% in COMPERA and 80% in ASPIRE; p<0·0001 for IPAH with a lung phenotype vs classical IPAH in both registries). INTERPRETATION: A cohort of patients meeting diagnostic criteria for IPAH with a distinct, presumably smoking-related form of pulmonary hypertension accompanied by a low DLCO, resemble patients with pulmonary hypertension due to lung disease rather than classical IPAH. These observations have pathogenetic, diagnostic, and therapeutic implications, which require further exploration. FUNDING: COMPERA is funded by unrestricted grants from Acceleron, Bayer, GlaxoSmithKline, Janssen, and OMT. The ASPIRE Registry is supported by Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.


Assuntos
Hipertensão Pulmonar , Monóxido de Carbono/uso terapêutico , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Peptídeos/uso terapêutico , Prognóstico , Sistema de Registros
9.
Invest Ophthalmol Vis Sci ; 63(2): 12, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129590

RESUMO

Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.


Assuntos
Humor Aquoso/fisiologia , Consenso , Glaucoma/metabolismo , Pressão Intraocular/fisiologia , Hipertensão Ocular/metabolismo , Malha Trabecular/metabolismo , Animais , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Camundongos , Hipertensão Ocular/fisiopatologia , Tonometria Ocular
10.
JAMA Ophthalmol ; 140(1): 11-18, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792559

RESUMO

IMPORTANCE: Open-angle glaucoma may continue to progress despite significant lowering of intraocular pressure (IOP). Preclinical research has suggested that enhancing mitochondrial function and energy production may enhance retinal ganglion cell survival in animal models of glaucoma, but there is scant information on its effectiveness in a clinical setting. OBJECTIVE: To test the hypothesis that a combination of nicotinamide and pyruvate can improve retinal ganglion cell function in human glaucoma as measured with standard automated perimetry. DESIGN, SETTING, AND PARTICIPANTS: In this phase 2, randomized, double-blind, placebo-controlled clinical trial at a single academic institution, 197 patients were assessed for eligibility. Of these, 42 patients with treated open-angle glaucoma and moderate visual field loss in at least 1 eye were selected for inclusion and randomized. A total of 32 completed the study and were included in the final analysis. The mean (SD) age was 64.6 (9.8) years. Twenty-one participants (66%) were female. Participant race and ethnicity data were collected via self-report to ensure the distribution reflected that observed in clinical practice in the US but are not reported here to protect patient privacy. Recruitment took place in April 2019 and patients were monitored through December 2020. Data were analyzed from January to May 2021. INTERVENTIONS: Ascending oral doses of nicotinamide (1000 to 3000 mg) and pyruvate (1500 to 3000 mg) vs placebo (2:1 randomization). MAIN OUTCOMES AND MEASURES: Number of visual field test locations improving beyond normal variability in the study eye. Secondary end points were the rates of change of visual field global indices (mean deviation [MD], pattern standard deviation [PSD], and visual field index [VFI]). RESULTS: Twenty-two of 29 participants (76%) randomized to the intervention group and 12 of 13 participants (92%) randomized to placebo received their allocation, and 32 participants (32 eyes; ratio 21:11) completed the study (21 from the intervention group and 11 from the placebo group). Median (IQR) follow-up time was 2.2 (2.0-2.4) months. No serious adverse events were reported during the study. The number of improving test locations was significantly higher in the treatment group than in the placebo group (median [IQR], 15 [6-25] vs 7 [6-11]; P = .005). Rates of change of PSD suggested improvement with treatment compared with placebo (median, -0.06 vs 0.02 dB per week; 95% CI, 0.02 to 0.24; P = .02) but not MD (0.04 vs -0.002 dB per week; 95% CI, -0.27 to 0.09; P = .35) or VFI (0.09 vs -0.02% per week; 95% CI, -0.53 to 0.36; P = .71). CONCLUSIONS AND RELEVANCE: A combination of nicotinamide and pyruvate yielded significant short-term improvement in visual function, supporting prior experimental research suggesting a role for these agents in neuroprotection for individuals with glaucoma and confirming the need for long-term studies to establish their usefulness in slowing progression. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03797469.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Animais , Método Duplo-Cego , Feminino , Glaucoma de Ângulo Aberto/tratamento farmacológico , Humanos , Pressão Intraocular , Masculino , Niacinamida/uso terapêutico , Ácido Pirúvico/uso terapêutico
11.
Nat Commun ; 12(1): 4877, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385434

RESUMO

Chronically elevated intraocular pressure (IOP) is the major risk factor of primary open-angle glaucoma, a leading cause of blindness. Dysfunction of the trabecular meshwork (TM), which controls the outflow of aqueous humor (AqH) from the anterior chamber, is the major cause of elevated IOP. Here, we demonstrate that mice deficient in the Krüppel-like zinc finger transcriptional factor GLI-similar-1 (GLIS1) develop chronically elevated IOP. Magnetic resonance imaging and histopathological analysis reveal that deficiency in GLIS1 expression induces progressive degeneration of the TM, leading to inefficient AqH drainage from the anterior chamber and elevated IOP. Transcriptome and cistrome analyses identified several glaucoma- and extracellular matrix-associated genes as direct transcriptional targets of GLIS1. We also identified a significant association between GLIS1 variant rs941125 and glaucoma in humans (P = 4.73 × 10-6), further supporting a role for GLIS1 into glaucoma etiology. Our study identifies GLIS1 as a critical regulator of TM function and maintenance, AqH dynamics, and IOP.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Malha Trabecular/fisiopatologia , Fatores de Transcrição/metabolismo , Animais , Humor Aquoso/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Glaucoma/genética , Glaucoma/metabolismo , Células HEK293 , Humanos , Pressão Intraocular/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq/métodos , Malha Trabecular/metabolismo , Fatores de Transcrição/genética
12.
Autism ; 25(8): 2152-2161, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34308675

RESUMO

LAY ABSTRACT: Oxytocin is a hormone that mediates interpersonal relationships through enhancing social recognition, social memory, and reducing stress. It is released centrally into the cerebrospinal fluid, as well as peripherally into the blood, where it can easily be measured. Some studies indicate that the oxytocin system with its social implications might be different in people with autism spectrum disorder. With summarizing evidence of 31 studies, this meta-analysis suggests that children with autism spectrum disorder have lower blood oxytocin levels compared to neurotypical individuals. This might not be the case for adults with autism spectrum disorder, where we could not find a difference. Our findings motivate further exploration of the oxytocin system in children with autism spectrum disorder. This could lead to therapeutic options in treating autism spectrum disorder in childhood.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Ocitocina/sangue , Criança , Humanos , Relações Interpessoais
13.
Genetics ; 218(1)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33734376

RESUMO

The final step in proline biosynthesis is catalyzed by three pyrroline-5-carboxylate reductases, PYCR1, PYCR2, and PYCR3, which convert pyrroline-5-carboxylate (P5C) to proline. Mutations in human PYCR1 and ALDH18A1 (P5C Synthetase) cause Cutis Laxa (CL), whereas mutations in PYCR2 cause hypomyelinating leukodystrophy 10 (HLD10). Here, we investigated the genetics of Pycr1 and Pycr2 in mice. A null allele of Pycr1 did not show integument or CL-related phenotypes. We also studied a novel chemically-induced mutation in Pycr2. Mice with recessive loss-of-function mutations in Pycr2 showed phenotypes consistent with neurological and neuromuscular disorders, including weight loss, kyphosis, and hind-limb clasping. The peripheral nervous system was largely unaffected, with only mild axonal atrophy in peripheral nerves. A severe loss of subcutaneous fat in Pycr2 mutant mice is reminiscent of a CL-like phenotype, but primary features such as elastin abnormalities were not observed. Aged Pycr2 mutant mice had reduced white blood cell counts and altered lipid metabolism, suggesting a generalized metabolic disorder. PYCR1 and -2 have similar enzymatic and cellular activities, and consistent with previous studies, both were localized in the mitochondria in fibroblasts. Both PYCR1 and -2 were able to complement the loss of Pro3, the yeast enzyme that converts P5C to proline, confirming their activity as P5C reductases. In mice, Pycr1; Pycr2 double mutants were sub-viable and unhealthy compared to either single mutant, indicating the genes are largely functionally redundant. Proline levels were not reduced, and precursors were not increased in serum from Pycr2 mutant mice or in lysates from skin fibroblast cultures, but placing Pycr2 mutant mice on a proline-free diet worsened the phenotype. Thus, Pycr1 and -2 have redundant functions in proline biosynthesis, and their loss makes proline a semi-essential amino acid. These findings have implications for understanding the genetics of CL and HLD10, and for modeling these disorders in mice.


Assuntos
Prolina/biossíntese , Pirrolina Carboxilato Redutases/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Prolina/química , Prolina/genética , Pirrolina Carboxilato Redutases/metabolismo
14.
Dis Model Mech ; 14(2)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33462143

RESUMO

Variants in the LIM homeobox transcription factor 1-beta (LMX1B) gene predispose individuals to elevated intraocular pressure (IOP), a key risk factor for glaucoma. However, the effect of LMX1B mutations varies widely between individuals. To better understand the mechanisms underlying LMX1B-related phenotypes and individual differences, we backcrossed the Lmx1bV265D (also known as Lmx1bIcst ) allele onto the C57BL/6J (B6), 129/Sj (129), C3A/BLiA-Pde6b+ /J (C3H) and DBA/2J-Gpnmb+ (D2-G) mouse strain backgrounds. Strain background had a significant effect on the onset and severity of ocular phenotypes in Lmx1bV265D/+ mutant mice. Mice of the B6 background were the most susceptible to developing abnormal IOP distribution, severe anterior segment developmental anomalies (including malformed eccentric pupils, iridocorneal strands and corneal abnormalities) and glaucomatous nerve damage. By contrast, Lmx1bV265D mice of the 129 background were the most resistant to developing anterior segment abnormalities, had less severe IOP elevation than B6 mutants at young ages and showed no detectable nerve damage. To identify genetic modifiers of susceptibility to Lmx1bV265D -induced glaucoma-associated phenotypes, we performed a mapping cross between mice of the B6 (susceptible) and 129 (resistant) backgrounds. We identified a modifier locus on Chromosome 18, with the 129 allele(s) substantially lessening severity of ocular phenotypes, as confirmed by congenic analysis. By demonstrating a clear effect of genetic background in modulating Lmx1b-induced phenotypes, providing a panel of strains with different phenotypic severities and identifying a modifier locus, this study lays a foundation for better understanding the roles of LMX1B in glaucoma with the goal of developing new treatments.


Assuntos
Segmento Anterior do Olho/fisiopatologia , Anormalidades do Olho/genética , Predisposição Genética para Doença , Glaucoma/genética , Proteínas com Homeodomínio LIM/genética , Fatores de Transcrição/genética , Alelos , Animais , Cruzamentos Genéticos , Modelos Animais de Doenças , Feminino , Genes Homeobox , Patrimônio Genético , Genótipo , Pressão Intraocular , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Nervo Óptico/patologia , Fenótipo , Especificidade da Espécie
15.
Proc Natl Acad Sci U S A ; 117(52): 33619-33627, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318177

RESUMO

Intraocular pressure-sensitive retinal ganglion cell degeneration is a hallmark of glaucoma, the leading cause of irreversible blindness. Here, we used RNA-sequencing and metabolomics to examine early glaucoma in DBA/2J mice. We demonstrate gene expression changes that significantly impact pathways mediating the metabolism and transport of glucose and pyruvate. Subsequent metabolic studies characterized an intraocular pressure (IOP)-dependent decline in retinal pyruvate levels coupled to dysregulated glucose metabolism prior to detectable optic nerve degeneration. Remarkably, retinal glucose levels were elevated 50-fold, consistent with decreased glycolysis but possibly including glycogen mobilization and other metabolic changes. Oral supplementation of the glycolytic product pyruvate strongly protected from neurodegeneration in both rat and mouse models of glaucoma. Investigating further, we detected mTOR activation at the mechanistic nexus of neurodegeneration and metabolism. Rapamycin-induced inhibition of mTOR robustly prevented glaucomatous neurodegeneration, supporting a damaging role for IOP-induced mTOR activation in perturbing metabolism and promoting glaucoma. Together, these findings support the use of treatments that limit metabolic disturbances and provide bioenergetic support. Such treatments provide a readily translatable strategy that warrants investigation in clinical trials.


Assuntos
Glaucoma/metabolismo , Glucose/metabolismo , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Ácido Pirúvico/metabolismo , Sirolimo/farmacologia , Animais , Modelos Animais de Doenças , Glaucoma/patologia , Glaucoma/fisiopatologia , Pressão Intraocular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neuroproteção/efeitos dos fármacos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/patologia , Retina/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo
16.
J Neuroinflammation ; 17(1): 336, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176797

RESUMO

BACKGROUND: The risk of glaucoma increases significantly with age and exposure to elevated intraocular pressure, two factors linked with neuroinflammation. The complement cascade is a complex immune process with many bioactive end-products, including mediators of inflammation. Complement cascade activation has been shown in glaucoma patients and models of glaucoma. However, the function of complement-mediated inflammation in glaucoma is largely untested. Here, the complement peptide C3a receptor 1 was genetically disrupted in DBA/2J mice, an ocular hypertensive model of glaucoma, to test its contribution to neurodegeneration. METHODS: A null allele of C3ar1 was backcrossed into DBA/2J mice. Development of iris disease, ocular hypertension, optic nerve degeneration, retinal ganglion cell activity, loss of RGCs, and myeloid cell infiltration in C3ar1-deficient and sufficient DBA/2J mice were compared across multiple ages. RNA sequencing was performed on microglia from primary culture to determine global effects of C3ar1 on microglia gene expression. RESULTS: Deficiency in C3ar1 lowered the risk of degeneration in ocular hypertensive mice without affecting intraocular pressure elevation at 10.5 months of age. Differences were found in the percentage of mice affected, but not in individual characteristics of disease progression. The protective effect of C3ar1 deficiency was then overcome by additional aging and ocular hypertensive injury. Microglia and other myeloid-derived cells were the primary cells identified that express C3ar1. In the absence of C3ar1, microglial expression of genes associated with neuroinflammation and other immune functions were differentially expressed compared to WT. A network analysis of these data suggested that the IL10 signaling pathway is a major interaction partner of C3AR1 signaling in microglia. CONCLUSIONS: C3AR1 was identified as a damaging neuroinflammatory factor. These data help suggest complement activation causes glaucomatous neurodegeneration through multiple mechanisms, including inflammation. Microglia and infiltrating myeloid cells expressed high levels of C3ar1 and are the primary candidates to mediate its effects. C3AR1 appeared to be a major regulator of microglia reactivity and neuroinflammatory function due to its interaction with IL10 signaling and other immune related pathways. Targeting myeloid-derived cells and C3AR1 signaling with therapies is expected to add to or improve neuroprotective therapeutic strategies.


Assuntos
Degeneração Neural/metabolismo , Nervo Óptico/metabolismo , Receptores de Complemento/biossíntese , Receptores de Complemento/deficiência , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Redes Reguladoras de Genes/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/patologia , Nervo Óptico/patologia , Receptores de Complemento/genética
17.
Aging (Albany NY) ; 12(17): 16921-16935, 2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32687064

RESUMO

The homeobox genes (HOX) have emerged as a new family of master regulators of development and cancer. In the current study, we examined the expression and function of HOXC10 in human non-small cell lung cancer (NSCLC). We observed increased expression of HOXC10 in the more aggressive human NSCLC cell line NCI-H23 over the well differentiated A549 cells. To elucidate the expression and function of HOXC10 in NSCLC cells, we employed RT-PCR, immunoblotting, methylation-specific PCR, apoptosis assays, and xenograft model. Overexpression of HOXC10 in A549 cells conveyed increased proliferation, reduced apoptosis, and accelerated tumor growth when transplanted into nude mice. In contrast, siRNA-mediated knockdown of HOXC10 in NCI-H23 cells reduced proliferation and increased apoptosis. Our results further indicated that hypomethylation of the CpG island in the HOXC10 promoter was critical to elevated expression of HOXC10 in NSCLC cells. Lastly, we identified a G-quadruplex in the HOXC10 promoter and its G-quadruplex formation was required for elevated expression of HOXC10 in NSCLC cells. Moreover our results suggest that disruption of G-quadruplex formation can silence HOXC10 expression in NSCLC cells. In summary, we report HOXC10 as a novel tumor promoting oncogene in NSCLC cells.

18.
Mol Brain ; 13(1): 81, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450896

RESUMO

Glaucoma is the leading cause of irreversible vision loss. Ocular hypertension is a major risk factor for glaucoma and recent work has demonstrated critical early neuroinflammatory insults occur in the optic nerve head following ocular hypertension. Microglia and infiltrating monocytes are likely candidates to drive these neuroinflammatory insults. However, the exact molecular identity / transcriptomic profile of microglia following ocular hypertensive insults is unknown. To elucidate the molecular identity of microglia after long-term exposure to ocular hypertension, we used a mouse model of glaucoma (DBA/2 J). We performed RNA-sequencing of microglia mRNA from the optic nerve head at a time point following ocular hypertensive insults, but preceding detectable neurodegeneration (with microglia identified as being CD45lo/CD11b+/CD11c-). Furthermore, RNA-sequencing was performed on optic nerve head microglia from mice treated with radiation therapy, a potent therapy preventing neuroinflammatory insults. Transcriptomic profiling of optic nerve head microglia mRNA identifies metabolic priming with marked changes in mitochondrial gene expression, and changes to phagocytosis, inflammatory, and sensome pathways. The data predict that many functions of microglia that help maintain tissue homeostasis are affected. Comparative analysis of these data with data from previously published whole optic nerve head tissue or monocyte-only samples from DBA/2 J mice demonstrate that many of the neuroinflammatory signatures in these data sets arise from infiltrating monocytes and not reactive microglia. Finally, our data demonstrate that prophylactic radiation therapy of DBA/2 J mice potently abolishes these microglia metabolic transcriptomic changes at the same time points. Together, our data provide a unique resource for the community to help drive further hypothesis generation and testing in glaucoma.


Assuntos
Regulação da Expressão Gênica , Homeostase/genética , Microglia/metabolismo , Microglia/patologia , Hipertensão Ocular/genética , Hipertensão Ocular/patologia , Disco Óptico/metabolismo , Animais , Regulação para Baixo/genética , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Homeostase/efeitos da radiação , Pressão Intraocular/genética , Pressão Intraocular/efeitos da radiação , Camundongos Endogâmicos DBA , Microglia/efeitos da radiação , Monócitos/metabolismo , Monócitos/patologia , Hipertensão Ocular/fisiopatologia , Disco Óptico/patologia , Disco Óptico/efeitos da radiação , Fagocitose/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética , Regulação para Cima/genética
19.
Dis Model Mech ; 13(5)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32152063

RESUMO

Glaucoma is a leading cause of blindness, affecting up to 70 million people worldwide. High intraocular pressure (IOP) is a major risk factor for glaucoma. It is well established that inefficient aqueous humor (AqH) outflow resulting from structural or functional alterations in ocular drainage tissues causes high IOP, but the genes and pathways involved are poorly understood. We previously demonstrated that mutations in the gene encoding the serine protease PRSS56 induces ocular angle closure and high IOP in mice and identified reduced ocular axial length as a potential contributing factor. Here, we show that Prss56-/- mice also exhibit an abnormal iridocorneal angle configuration characterized by a posterior shift of ocular drainage structures relative to the ciliary body and iris. Notably, we show that retina-derived PRSS56 is required between postnatal days 13 and 18 for proper iridocorneal configuration and that abnormal positioning of the ocular drainage tissues is not dependent on ocular size reduction in Prss56-/- mice. Furthermore, we demonstrate that the genetic context modulates the severity of IOP elevation in Prss56 mutant mice and describe a progressive degeneration of ocular drainage tissues that likely contributes to the exacerbation of the high IOP phenotype observed on the C3H/HeJ genetic background. Finally, we identify five rare PRSS56 variants associated with human primary congenital glaucoma, a condition characterized by abnormal development of the ocular drainage structures. Collectively, our findings point to a role for PRSS56 in the development and maintenance of ocular drainage tissues and IOP homeostasis, and provide new insights into glaucoma pathogenesis.


Assuntos
Suscetibilidade a Doenças , Olho/patologia , Olho/fisiopatologia , Pressão Intraocular , Serina Proteases/deficiência , Sequência de Aminoácidos , Animais , Córnea/patologia , Feminino , Glaucoma/genética , Glaucoma/patologia , Iris/patologia , Masculino , Camundongos Knockout , Camundongos Mutantes , Tamanho do Órgão , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/metabolismo
20.
Invest Ophthalmol Vis Sci ; 60(10): 3283-3296, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369031

RESUMO

Purpose: Glaucoma is a complex disease with major risk factors including advancing age and increased intraocular pressure (IOP). Dissecting these earliest events will likely identify new avenues for therapeutics. Previously, we performed transcriptional profiling in DBA/2J (D2) mice, a widely used mouse model relevant to glaucoma. Here, we use these data to identify and test regulators of early gene expression changes in DBA/2J glaucoma. Methods: Upstream regulator analysis (URA) in Ingenuity Pathway Analysis was performed to identify potential master regulators of differentially expressed genes. The function of one putative regulator, mesenchyme homeobox 2 (Meox2), was tested using a combination of genetic, biochemical, and immunofluorescence approaches. Results: URA identified Meox2 as a potential regulator of early gene expression changes in the optic nerve head (ONH) of DBA/2J mice. Meox2 haploinsufficiency did not affect the characteristic diseases of the iris or IOP elevation seen in DBA/2J mice but did cause a significant increase in the numbers of eyes with axon damage compared to controls. While young mice appeared normal, aged Meox2 haploinsufficient DBA/2J mice showed a 44% reduction in MEOX2 protein levels. This correlated with modulation of age- and disease-specific vascular and myeloid alterations. Conclusions: Our data support a model whereby Meox2 controls IOP-dependent vascular remodeling and neuroinflammation to promote axon survival. Promoting these earliest responses prior to IOP elevation may be a viable neuroprotective strategy to delay or prevent human glaucoma.


Assuntos
Axônios/patologia , Glaucoma/genética , Haploinsuficiência/genética , Proteínas de Homeodomínio/genética , Degeneração Neural/genética , Disco Óptico/patologia , Células Ganglionares da Retina/patologia , Animais , Pressão Sanguínea/fisiologia , Western Blotting , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/fisiologia , Glaucoma/patologia , Pressão Intraocular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Degeneração Neural/patologia , Microscopia com Lâmpada de Fenda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...