Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798677

RESUMO

Photoperiodic Time Measurement is the ability of plants and animals to measure differences in day/night-length (photoperiod) and use that information to anticipate critical seasonal transformations such as annual temperature cycles. This timekeeping phenomenon triggers adaptive responses in higher organisms such as gonadal growth/regression, flowering, and hibernation. Unexpectedly, we discovered this capability in cyanobacteria, unicellular prokaryotes with generation times of only 5-6 h. Cyanobacteria in short winter-like days develop enhanced resistance to cold that involves desaturation of membrane lipids and differential programs of gene transcription, including stress response pathways. As in eukaryotes, this photoperiodic timekeeping requires an intact circadian clockwork and develops over multiple cycles. Therefore, photoperiodic timekeeping evolved in much simpler organisms than previously appreciated, and involved genetic responses to stresses that recur seasonally.

2.
Proc Natl Acad Sci U S A ; 121(21): e2318690121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739791

RESUMO

Cyanobacteria are photosynthetic bacteria whose gene expression patterns are globally regulated by their circadian (daily) clocks. Due to their ability to use sunlight as their energy source, they are also attractive hosts for "green" production of pharmaceuticals, renewable fuels, and chemicals. However, despite the application of traditional genetic tools such as the identification of strong promoters to enhance the expression of heterologous genes, cyanobacteria have lagged behind other microorganisms such as Escherichia coli and yeast as economically efficient cell factories. The previous approaches have ignored large-scale constraints within cyanobacterial metabolic networks on transcription, predominantly the pervasive control of gene expression by the circadian (daily) clock. Here, we show that reprogramming gene expression by releasing circadian repressor elements in the transcriptional regulatory pathways coupled with inactivation of the central oscillating mechanism enables a dramatic enhancement of expression in cyanobacteria of heterologous genes encoding both catalytically active enzymes and polypeptides of biomedical significance.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fotossíntese , Fotossíntese/genética , Relógios Circadianos/genética , Biotecnologia/métodos , Cianobactérias/genética , Cianobactérias/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
3.
Methods Mol Biol ; 2803: 239-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676898

RESUMO

Decompensated right ventricular failure (RVF) in pulmonary hypertension (PH) is fatal, with limited medical treatment options. Developing and testing novel therapeutics for PH requires a clinically relevant large animal model of increased pulmonary vascular resistance and RVF. This manuscript describes the method to induce an ovine PH-RVF model that utilizes left pulmonary artery (LPA) ligation, progressive main pulmonary artery (MPA) banding, and insertion of an RV pressure line for monitoring. The PA cuff and RV pressure tubing are connected to subcutaneous access ports. This model of PH-RVF is a versatile platform to control not only the disease severity, but also the RV's phenotypic response. Subjects undergo progressive PA band adjustments twice per week for approximately 9 weeks with sequential measures of RV pressure, PA cuff pressures, and mixed venous blood gas (SvO2). Subjects can further be exercised on a livestock treadmill while hemodynamic parameters are captured. At the initiation and endpoint of this model, ventricular function and dimensions are assessed using echocardiography. In this model, RV mean and systolic pressure increased to 28 ± 5 and 57 ± 7 mmHg at week 1, and further to 44 ± 7 and 93 ± 18 mmHg by week 9, respectively. Echocardiography demonstrates characteristic findings of PH-RVF, notably RV dilation, increased wall thickness, and septal bowing. The rate of PA banding has a significant impact on SvO2 and thus the model can be titrated to elicit varying RV phenotypes. When the PA cuff is tightened rapidly, it can lead to a precipitous decline in SvO2, leading to RV decompensation, whereas a slower, more paced strategy leads to an adaptive RV stress-load response that maintains physiologic SvO2. A faster rate of PA banding will also lead to more severe liver fibrosis. The addition of controlled exercise provides a useful platform for assessing the effects of physical exertion in a PH-RVF model. This chronic PH-RVF model provides a valuable tool for studying molecular mechanisms, developing diagnostic biomarkers, and evaluating mechanical circulatory support systems.


Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca , Hipertensão Pulmonar , Disfunção Ventricular Direita , Animais , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/etiologia , Ovinos , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/etiologia , Artéria Pulmonar/fisiopatologia , Ecocardiografia , Hemodinâmica
4.
J Biol Rhythms ; 39(2): 115-134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185853

RESUMO

Surely most chronobiologists believe circadian clocks are an adaptation of organisms that enhances fitness, but are we certain that this focus of our research effort really confers a fitness advantage? What is the evidence, and how do we evaluate it? What are the best criteria? These questions are the topic of this review. In addition, we will discuss selective pressures that might have led to the historical evolution of circadian systems while considering the intriguing question of whether the ongoing climate change is modulating these selective pressures so that the clock is still evolving.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Ritmo Circadiano
5.
J Heart Lung Transplant ; 43(2): 293-302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37907183

RESUMO

BACKGROUND: Right heart failure is the major cause of death in pulmonary hypertension. Lung transplantation is the only long-term treatment option for patients who fail medical therapy. Due to the scarcity of donor lungs, there is a critical need to develop durable mechanical support for the failing right heart. A major design goal for durable support is to reduce the size and complexity of devices to facilitate ambulation. Toward this end, we sought to deploy wearable mechanical support technology in a sheep disease model of chronic right heart failure. METHODS: In 6 sheep with chronic right heart failure, a mechanical support system consisting of an extracorporeal blood pump coupled with a gas exchange unit was attached in a right atrium-to-left atrium configuration for up to 7 days. Circuit performance, hematologic parameters, and animal hemodynamics were analyzed. RESULTS: Six subjects underwent the chronic disease model for 56 to 71 days. Three of the subjects survived to the 7-day end-point for circulatory support. The circuit provided 2.8 (0.5) liter/min of flow compared to the native pulmonary blood flow of 3.5 (1.1) liter/min. The animals maintained physiologically balanced blood gas profile with a sweep flow of 1.2 (1.0) liter/min. Two animals freely ambulated while wearing the circuit. CONCLUSIONS: Our novel mechanical support system provided physiologic support for a large animal model of pulmonary hypertension with right heart failure. The small footprint of the circuit and the low sweep requirement demonstrate the feasibility of this technology to enable mobile ambulatory applications.


Assuntos
Oxigenação por Membrana Extracorpórea , Insuficiência Cardíaca , Coração Auxiliar , Hipertensão Pulmonar , Humanos , Animais , Ovinos , Hipertensão Pulmonar/terapia , Insuficiência Cardíaca/cirurgia , Hemodinâmica/fisiologia , Átrios do Coração
7.
PLoS Biol ; 20(11): e3001865, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350921

RESUMO

The circadian rhythms of hosts dictate an approximately 24 h transformation in the environment experienced by their gut microbiome. The consequences of this cyclic environment on the intestinal microbiota are barely understood and are likely to have medical ramifications. Can daily rhythmicity in the gut act as a selective pressure that shapes the microbial community? Moreover, given that several bacterial species have been reported to exhibit circadian rhythms themselves, we test here whether a rhythmic environment is a selective pressure that favors clock-harboring bacteria that can anticipate and prepare for consistent daily changes in the environment. We observed that the daily rhythmicity of the mouse gut environment is a stabilizing influence that facilitates microbiotal recovery from antibiotic perturbation. The composition of the microbiome recovers to pretreatment conditions when exposed to consistent daily rhythmicity, whereas in hosts whose feeding and activity patterns are temporally disrupted, microbiotal recovery is incomplete and allows potentially unhealthy opportunists to exploit the temporal disarray. Unexpectedly, we found that in the absence of antibiotic perturbation, the gut microbiome is stable to rhythmic versus disrupted feeding and activity patterns. Comparison of our results with those of other studies reveals an intriguing correlation that a stable microbiome may be resilient to one perturbation alone (e.g., disruption of the daily timing of host behavior and feeding), but not to multiple perturbations in combination. However, after a perturbation of the stable microbiome, a regular daily pattern of host behavior/feeding appears to be essential for the microbiome to recover to the original steady state. Given the inconsistency of daily rhythms in modern human life (e.g., shiftwork, social jet-lag, irregular eating habits), these results emphasize the importance of consistent daily rhythmicity to optimal health not only directly to the host, but also indirectly by preserving the host's microbiome in the face of perturbations.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Camundongos , Animais , Ritmo Circadiano , Bactérias , Antibacterianos/farmacologia
8.
Sci Signal ; 15(747): eabq7618, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35973028

RESUMO

The intrinsic fluorescence of samples confounds the use of fluorescence-based sensors. This is of particular concern in high-throughput screening (HTS) applications using large chemical libraries containing intrinsically fluorescent compounds. To overcome this problem, we developed a bioluminescence resonance energy transfer (BRET) Ca2+ sensor, CalfluxCTN. We demonstrated that it reliably reported changes in intracellular Ca2+ concentrations evoked by an agonist and an antagonist of the human muscarinic acetylcholine receptor M1 (hM1R) even in the presence of the fluorescent compound fluorescein, which interfered with a standard fluorescent HTS sensor (Fluo-8). In an HTS using a chemical library containing fluorescent compounds, CalfluxCTN accurately identified agonists and antagonists that were missed or miscategorized using Fluo-8. Moreover, we showed that a luciferase substrate that becomes activated only when inside cells generated long-lasting BRET signals in HTS, enabling results to be reliably compared among replicate samples for hours. Thus, the use of a self-luminescent sensor instead of a fluorescent sensor could facilitate the complete screening of chemical libraries in a high-throughput context and enable analysis of autofluorescent samples in many different applications.


Assuntos
Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas , Transferência de Energia , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Medições Luminescentes/métodos , Bibliotecas de Moléculas Pequenas/farmacologia
9.
ACS Chem Biol ; 17(7): 1658-1664, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35679588

RESUMO

A high-throughput cell-based screen identified redox-active small molecules that produce a period lengthening of the circadian rhythm. The strongest period lengthening phenotype was induced by a phenazine carboxamide (VU661). Comparison to two isomeric benzquinoline carboxamides (VU673 and VU164) shows the activity is associated with the redox modulating phenazine functionality. Furthermore, ex vivo cell analysis using optical redox ratio measurements shows the period lengthening phenotype to be associated with a shift to the NAD/FAD oxidation state of nicotinamide and flavine coenzymes.


Assuntos
Ritmo Circadiano , Fenazinas , Oxirredução
10.
Front Behav Neurosci ; 16: 837523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401134

RESUMO

Normal neurodevelopment requires precise expression of the key ubiquitin ligase gene Ube3a. Comparing newly generated mouse models for Ube3a downregulation (models of Angelman syndrome) vs. Ube3a upregulation (models for autism), we find reciprocal effects of Ube3a gene dosage on phenotypes associated with circadian rhythmicity, including the amount of locomotor activity. Consistent with results from neurons in general, we find that Ube3a is imprinted in neurons of the suprachiasmatic nuclei (SCN), the pacemaking circadian brain locus, despite other claims that SCN neurons were somehow exceptional to these imprinting rules. In addition, Ube3a-deficient mice lack the typical drop in wake late in the dark period and have blunted responses to sleep deprivation. Suppression of physical activity by light in Ube3a-deficient mice is not due to anxiety as measured by behavioral tests and stress hormones; quantification of stress hormones may provide a mechanistic link to sleep alteration and memory deficits caused by Ube3a deficiency, and serve as an easily measurable biomarker for evaluating potential therapeutic treatments for Angelman syndrome. We conclude that reduced Ube3a gene dosage affects not only neurodevelopment but also sleep patterns and circadian rhythms.

11.
Science ; 375(6584): 1041-1047, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35143256

RESUMO

Heterologous prime-boost immunization strategies have the potential to augment COVID-19 vaccine efficacy. We longitudinally profiled severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-specific serological and memory B cell (MBC) responses in individuals who received either homologous (ChAdOx1:ChAdOx1) or heterologous (ChAdOx1:mRNA-1273) prime-boost vaccination. Heterologous messenger RNA (mRNA) booster immunization induced higher serum neutralizing antibody and MBC responses against SARS-CoV-2 variants of concern (VOCs) compared with that of homologous ChAdOx1 boosting. Specificity mapping of circulating B cells revealed that mRNA-1273 boost immunofocused ChAdOx1-primed responses onto epitopes expressed on prefusion-stabilized S. Monoclonal antibodies isolated from mRNA-1273-boosted participants displayed overall higher binding affinities and increased breadth of reactivity against VOCs relative to those isolated from ChAdOx1-boosted individuals. Overall, the results provide molecular insight into the enhanced quality of the B cell response induced after heterologous mRNA booster vaccination.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , ChAdOx1 nCoV-19/imunologia , Células B de Memória/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Adulto , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Especificidade de Anticorpos , ChAdOx1 nCoV-19/administração & dosagem , Feminino , Humanos , Esquemas de Imunização , Imunização Secundária , Imunogenicidade da Vacina , Masculino , Pessoa de Meia-Idade , Conformação Proteica , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química
12.
Rapid Commun Mass Spectrom ; 36(8): e9252, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35014116

RESUMO

RATIONALE: Compound-specific oxygen stable isotope analysis has been commercially available for about 20 years but the technique has been infrequently applied and practical operating knowledge is limited. Existing reactor designs and chemistry fail to fully exclude contaminating oxygen, are chromatographically flawed, and are generally fabricated from expensive platinum tubing. METHODS: As a new interface between the gas chromatograph and isotope ratio mass spectrometer, we used a nickel tube reactor (containing no platinum wires) in a ceramic sheath with countercurrent helium flushing, operated at 1250°C. We analyzed suites of four long-chain alcohols (LCAs), defining the least and most 18 O-enriched LCAs as internal standards. The other two LCAs, co-injected in varying amounts, were treated as unknowns and amplitude-corrected during data reduction. RESULTS: With this design, signals from non-oxygenated compounds are minimized with a hydrogen trickle, while excessive graphitization is counterproductive. A balance of hydrogen and graphite is required to maintain a proper, stable redox state in the reactor. With low extraneous oxygen, the exact hydrogen flow has little effect on final δ18 O data quality. Overall average δ18 O values precisions and errors for the unknowns were better than 0.4 ‰ for injections between 2 and 7 nmol per component. CONCLUSIONS: Our actively flushed sheath reduces oxygen infiltration to negligible levels and results in a chromatographic flow devoid of dead or poorly swept volumes. The improved design allows measurement of LCAs with accuracy and precision sufficient to enable investigating real processes, and may also have wider applications to other isotopes.


Assuntos
Hélio , Níquel , Hidrogênio/análise , Oxigênio , Isótopos de Oxigênio/análise
13.
Front Physiol ; 13: 1085959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685199

RESUMO

The study of circadian rhythms in bacteria was transformed by studies of the cyanobacterium Synechococcus elongatus. However, in a number of respects S. elongatus is atypical, and while those unusual characteristics were helpful for rapid progress in the past, another commonly used cyanobacterial species, Synechocystis sp. PCC 6803, may be more representative and therefore more productive for future insights into bacterial clock mechanisms. In the past, circadian studies of Synechocystis have suffered from not having an excellent reporter of circadian gene expression, but we introduce here a new luminescence reporter that rivals the reporters that have been used so successfully in S. elongatus. Using this new system, we generate for the first time in Synechocystis circadian period mutants resulting from point mutations. The temperature compensation and dark-pulse resetting that mediates entrainment to the environment is characterized. Moreover, we analyse the complex organization of clock genes in Synechocystis and identify which genes are essential for circadian rhythmicity and adaptive fitness for entrainment and optimal phase alignment to environmental cycles (and which genes are not). These developments will provide impetus for new approaches towards understanding daily timekeeping mechanisms in bacteria.

14.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34857637

RESUMO

Reading and writing DNA were once the rate-limiting step in synthetic biology workflows. This has been replaced by the search for the optimal target sequences to produce systems with desired properties. Directed evolution and screening mutant libraries are proven technologies for isolating strains with enhanced performance whenever specialized assays are available for rapidly detecting a phenotype of interest. Armed with technologies such as CRISPR-Cas9, these experiments are capable of generating libraries of up to 1010 genetic variants. At a rate of 102 samples per day, standard analytical methods for assessing metabolic phenotypes represent a major bottleneck to modern synthetic biology workflows. To address this issue, we have developed a desorption electrospray ionization-imaging mass spectrometry screening assay that directly samples microorganisms. This technology increases the throughput of metabolic measurements by reducing sample preparation and analyzing organisms in a multiplexed fashion. To further accelerate synthetic biology workflows, we utilized untargeted acquisitions and unsupervised analytics to assess multiple targets for future engineering strategies within a single acquisition. We demonstrate the utility of the developed method using Escherichia coli strains engineered to overproduce free fatty acids. We determined discrete metabolic phenotypes associated with each strain, which include the primary fatty acid product, secondary products, and additional metabolites outside the engineered product pathway. Furthermore, we measured changes in amino acid levels and membrane lipid composition, which affect cell viability. In sum, we present an analytical method to accelerate synthetic biology workflows through rapid, untargeted, and multiplexed metabolomic analyses.


Assuntos
Metabolômica/métodos , Microbiota/fisiologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Variação Biológica da População , Ácidos Graxos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Biologia Sintética/métodos
15.
Front Bioeng Biotechnol ; 9: 773353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778237

RESUMO

Sensitive detection of biological events is a goal for the design and characterization of sensors that can be used in vitro and in vivo. One important second messenger is Ca++ which has been a focus of using genetically encoded Ca++ indicators (GECIs) within living cells or intact organisms in vivo. An ideal GECI would exhibit high signal intensity, excellent signal-to-noise ratio (SNR), rapid kinetics, a large dynamic range within relevant physiological conditions, and red-shifted emission. Most available GECIs are based on fluorescence, but bioluminescent GECIs have potential advantages in terms of avoiding tissue autofluorescence, phototoxicity, photobleaching, and spectral overlap, as well as enhancing SNR. Here, we summarize current progress in the development of bioluminescent GECIs and introduce a new and previously unpublished biosensor. Because these biosensors require a substrate, we also describe the pros and cons of various substrates used with these sensors. The novel GECI that is introduced here is called CalBiT, and it is a Ca++ indicator based on the functional complementation of NanoBiT which shows a high dynamic change in response to Ca++ fluxes. Here, we use CalBiT for the detection of Ca++ fluctuations in cultured cells, including its ability for real-time imaging in living cells.

16.
Open Biol ; 11(10): 210183, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610264

RESUMO

Time-restricted feeding (TRF) studies underscore that when food is consumed during the daily cycle is important for weight gain/loss because the circadian clock rhythmically modulates metabolism. However, the interpretation of previous TRF studies has been confounded by study designs that introduced an extended period of enforced fasting. We introduce a novel time-optimized feeding (TOF) regimen that disentangles the effects of phase-dependent feeding from the effects of enforced fasting in mice, as well as providing a laboratory feeding protocol that more closely reflects the eating patterns of humans who usually have 24 hour access to food. Moreover, we test whether a sudden switch from ad libitum food access to TRF evokes a corticosterone (stress) response. Our data indicate that the timing of high-fat feeding under TOF allows most of the benefit of TRF without obligatory fasting or evoking a stress response. This benefit occurs through stable temporal coupling of carbohydrate/lipid oxidation with feeding. These results highlight that timing the ingestion of calorically dense foods to optimized daily phases will enhance lipid oxidation and thereby limit fat accumulation.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Comportamento Alimentar/fisiologia , Obesidade/prevenção & controle , Animais , Relógios Circadianos , Ritmo Circadiano , Corticosterona/sangue , Metabolismo Energético , Jejum/sangue , Peroxidação de Lipídeos , Masculino , Camundongos , Obesidade/sangue , Obesidade/induzido quimicamente
17.
J Biol Rhythms ; 36(6): 595-601, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34696614

RESUMO

False negative tests for SARS-CoV-2 are common and have important public health and medical implications. We tested the hypothesis of diurnal variation in viral shedding by assessing the proportion of positive versus negative SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) tests and cycle time (Ct) values among positive samples by the time of day. Among 86,342 clinical tests performed among symptomatic and asymptomatic patients in a regional health care network in the southeastern United States from March to August 2020, we found evidence for diurnal variation in the proportion of positive SARS-CoV-2 tests, with a peak around 1400 h and 1.7-fold variation over the day after adjustment for age, sex, race, testing location, month, and day of week and lower Ct values during the day for positive samples. These findings have important implications for public health testing and vaccination strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Teste para COVID-19 , Ritmo Circadiano , Humanos , Reação em Cadeia da Polimerase
18.
Nat Commun ; 12(1): 5150, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446715

RESUMO

Recent studies have revealed the prevalence and biological significance of guanidine metabolism in nature. However, the metabolic pathways used by microbes to degrade guanidine or mitigate its toxicity have not been widely studied. Here, via comparative proteomics and subsequent experimental validation, we demonstrate that Sll1077, previously annotated as an agmatinase enzyme in the model cyanobacterium Synechocystis sp. PCC 6803, is more likely a guanidinase as it can break down guanidine rather than agmatine into urea and ammonium. The model cyanobacterium Synechococcus elongatus PCC 7942 strain engineered to express the bacterial ethylene-forming enzyme (EFE) exhibits unstable ethylene production due to toxicity and genomic instability induced by accumulation of the EFE-byproduct guanidine. Co-expression of EFE and Sll1077 significantly enhances genomic stability and enables the resulting strain to achieve sustained high-level ethylene production. These findings expand our knowledge of natural guanidine degradation pathways and demonstrate their biotechnological application to support ethylene bioproduction.


Assuntos
Proteínas de Bactérias/metabolismo , Etilenos/biossíntese , Instabilidade Genômica , Guanidina/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Synechocystis/enzimologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Synechocystis/genética
19.
PLoS Comput Biol ; 17(5): e1008987, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34048425

RESUMO

Modification of the Per2 clock gene in mPer2Luc reporter mice significantly alters circadian function. Behavioral period in constant dark is lengthened, and dissociates into two distinct components in constant light. Rhythms exhibit increased bimodality, enhanced phase resetting to light pulses, and altered entrainment to scheduled feeding. Mechanistic mathematical modelling predicts that enhanced protein interactions with the modified mPER2 C-terminus, combined with differential clock regulation among SCN subregions, can account for effects on circadian behavior via increased Per2 transcript and protein stability. PER2::LUC produces greater suppression of CLOCK:BMAL1 E-box activity than PER2. mPer2Luc carries a 72 bp deletion in exon 23 of Per2, and retains a neomycin resistance cassette that affects rhythm amplitude but not period. The results show that mPer2Luc acts as a circadian clock mutation illustrating a need for detailed assessment of potential impacts of c-terminal tags in genetically modified animal models.


Assuntos
Ritmo Circadiano , Luciferases/genética , Proteínas Circadianas Period/genética , Animais , Comportamento Animal , Comportamento Alimentar , Locomoção , Camundongos , Camundongos Endogâmicos C57BL , Mutação
20.
Artigo em Inglês | MEDLINE | ID: mdl-34022525

RESUMO

Bioluminescence in Diptera is found in the Keroplatidae family, within Arachnocampininae and Keroplatinae subfamilies, with reported occurrences in Oceania, Eurasia, and Americas. Larvae of Orfelia fultoni, which inhabit stream banks in the Appalachian Mountains, emit the bluest bioluminescence among insects, using it for prey attraction, similarly to Arachnocampa spp. Although bioluminescence has a similar prey attraction function, the systems of Arachonocampininae and Keroplatinae subfamilies are morphologically/biochemically distinct, indicating different evolutionary origins. To identify the possible coding genes associated with physiological control, ecological adaptations, and origin/evolution of bioluminescence in the Keroplatinae subfamily, we performed the RNA-Seq analysis of O. fultoni larvae during day and night and compared it with the transcriptomes of Arachnocampa luminosa, and reanalyzed the previously published proteomic data of O. fultoni against the RNA-Seq dataset. The abundance of chaperones/heat-shock and hexamerin gene products at night and in luciferase enriched fractions supports their possible association and participation in bioluminescence. The low diversity of copies/families of opsins indicate a simpler visual system in O. fultoni. Noteworthy, gene products associated with silk protein biosynthesis in Orfelia were more similar to Lepidoptera than to the Arachnocampa, indicating that, similarly to the bioluminescent systems, at some point, the biochemical apparatus for web construction may have evolved independently in Orfelia and Arachnocampa.


Assuntos
Adaptação Fisiológica , Dípteros/genética , Proteínas de Insetos/metabolismo , Luminescência , Proteínas Luminescentes/metabolismo , RNA-Seq/métodos , Transcriptoma/efeitos da radiação , Animais , Dípteros/efeitos da radiação , Ecossistema , Proteínas de Insetos/genética , Luz , Proteínas Luminescentes/genética , Proteoma/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...