Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(692): eadf4086, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37075130

RESUMO

Glutaric aciduria type I (GA-1) is an inborn error of metabolism with a severe neurological phenotype caused by the deficiency of glutaryl-coenzyme A dehydrogenase (GCDH), the last enzyme of lysine catabolism. Current literature suggests that toxic catabolites in the brain are produced locally and do not cross the blood-brain barrier. In a series of experiments using knockout mice of the lysine catabolic pathway and liver cell transplantation, we uncovered that toxic GA-1 catabolites in the brain originated from the liver. Moreover, the characteristic brain and lethal phenotype of the GA-1 mouse model was rescued by two different liver-directed gene therapy approaches: Using an adeno-associated virus, we replaced the defective Gcdh gene or we prevented flux through the lysine degradation pathway by CRISPR deletion of the aminoadipate-semialdehyde synthase (Aass) gene. Our findings question the current pathophysiological understanding of GA-1 and reveal a targeted therapy for this devastating disorder.


Assuntos
Glutaril-CoA Desidrogenase , Lisina , Animais , Camundongos , Glutaril-CoA Desidrogenase/genética , Glutaril-CoA Desidrogenase/metabolismo , Lisina/metabolismo , Camundongos Knockout , Fígado/metabolismo
2.
Curr Protoc Mol Biol ; 130(1): e117, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150344

RESUMO

Somatic liver knockout (SLiK) is a method developed to rapidly generate a liver-specific knockout of one or several genes. This technique combines the strengths of CRISPR/Cas9 gene editing and hydrodynamic tail-vein injection, a simple in vivo method for transfection of hepatocytes, to harness the powerful selection pressure of tyrosinemic livers to replace host hepatocytes with any desired gene deletion. In this protocol, we will describe sgRNA design and cloning, hydrodynamic tail-vein injection of targeting constructs, and screening and validation methods for efficient in vivo gene editing. © 2020 by John Wiley & Sons, Inc. Support Protocol 1: sgRNA design Support Protocol 2: sgRNA construction: daisy chaining multiple sgRNAs Basic Protocol: Delivery of DNA by hydrodynamic tail-vein injection and liver repopulation of edited hepatocytes Support Protocol 3: Validation of CRISPR/Cas9 cutting in vivo.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Hepatócitos/metabolismo , Fígado/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Camundongos , Camundongos Knockout , RNA Guia de Cinetoplastídeos/genética , Transfecção/métodos
3.
Elife ; 92020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31989925

RESUMO

Lung disease causes significant morbidity and mortality, and is exacerbated by environmental injury, for example through lipopolysaccharide (LPS) or ozone (O3). Toll-like receptors (TLRs) orchestrate immune responses to injury by recognizing pathogen- or danger-associated molecular patterns. TLR4, the prototypic receptor for LPS, also mediates inflammation after O3, triggered by endogenous hyaluronan. Regulation of TLR4 signaling is incompletely understood. TLR5, the flagellin receptor, is expressed in alveolar macrophages, and regulates immune responses to environmental injury. Using in vivo animal models of TLR4-mediated inflammations (LPS, O3, hyaluronan), we show that TLR5 impacts the in vivo response to LPS, hyaluronan and O3. We demonstrate that immune cells of human carriers of a dominant negative TLR5 allele have decreased inflammatory response to O3 exposure ex vivo and LPS exposure in vitro. Using primary murine macrophages, we find that TLR5 physically associates with TLR4 and biases TLR4 signaling towards the MyD88 pathway. Our results suggest an updated paradigm for TLR4/TLR5 signaling.


Immune cells in the lung help guard against infections. On the surface of these cells are proteins called TLR receptors that recognize dangerous molecules or DNA from disease-causing microbes such as bacteria. When the immune cells detect these invaders, the TLR receptors spring into action and trigger an inflammatory response to destroy the microbes. This inflammation usually helps the lung clear infections. But it can also be harmful and damage the lung, for example when inflammation is caused by non-infectious substances such as pollutants in the atmosphere. There are several TLR receptors that each recognize a specific molecule. In 2010, researchers showed that the receptor TLR4 is responsible for causing inflammation in the lung after exposure to pollution. Another receptor called TLR5 also helps activate the immune response in the lung. But it was unclear whether this receptor also plays a role in pollution-linked lung damage. Now, Hussain, Johnson, Sciurba et al. ­ including one of the researchers involved in the 2010 study ­ have investigated the role of TLR5 in immune cells from the lungs of humans and mice. The experiments showed that TLR5 works together with TLR4 and helps trigger an inflammatory response to both pollutants and bacteria. Hussain et al. found that people lacking a working TLR5 receptor (which make up 3­10% of the population) are less likely to experience lung inflammation when exposed to pollution or bacterial proteins that activate TLR4. These findings suggest that people without TLR5 may be protected from pollution-induced lung injury. Further research into the role of TLR5 could help develop genetic tests for identifying people who are more sensitive to damage from pollution. This information could then be used to determine the likelihood of a patient experiencing certain lung diseases.


Assuntos
Lesão Pulmonar , Fator 88 de Diferenciação Mieloide , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 5 Toll-Like , Animais , Células Cultivadas , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 40(1): 72-85, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31619061

RESUMO

OBJECTIVE: A Mediterranean diet supplemented with olive oil and nuts prevents cardiovascular disease in clinical studies, but the underlying mechanisms are incompletely understood. We investigated whether the preventive effect of the diet could be due to inhibition of atherosclerosis and foamy monocyte formation in Ldlr-/- mice fed with a diet in which milkfat in a Western diet (WD) was replaced with extra-virgin olive oil and nuts (EVOND). Approach and Results: Ldlr-/- mice were fed EVOND or a Western diet for 3 (or 6) months. Compared with the Western diet, EVOND decreased triglyceride and cholesterol levels but increased unsaturated fatty acid concentrations in plasma. EVOND also lowered intracellular lipid accumulation in circulating monocytes, indicating less formation of foamy monocytes, compared with the Western diet. In addition, compared with the Western diet, EVOND reduced monocyte expression of inflammatory cytokines, CD36, and CD11c, with decreased monocyte uptake of oxLDL (oxidized LDL [low-density lipoprotein]) ex vivo and reduced CD11c+ foamy monocyte firm arrest on vascular cell adhesion molecule-1 and E-selectin-coated slides in an ex vivo shear flow assay. Along with these changes, EVOND compared with the Western diet reduced the number of CD11c+ macrophages in atherosclerotic lesions and lowered atherosclerotic lesion area of the whole aorta and aortic sinus. CONCLUSIONS: A diet enriched in extra-virgin olive oil and nuts, compared with a Western diet high in saturated fat, lowered plasma cholesterol and triglyceride levels, inhibited foamy monocyte formation, inflammation, and adhesion, and reduced atherosclerosis in Ldlr-/- mice.


Assuntos
Aterosclerose/dietoterapia , Dieta Ocidental , Gorduras Insaturadas na Dieta/farmacologia , Ácidos Graxos/efeitos adversos , Metabolismo dos Lipídeos/fisiologia , Monócitos/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Monócitos/patologia
5.
JHEP Rep ; 1(5): 392-402, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32039390

RESUMO

CRISPR/Cas9 gene editing has revolutionised biomedical research. The ease of design has allowed many groups to apply this technology for disease modelling in animals. While the mouse remains the most commonly used organism for embryonic editing, CRISPR is now increasingly performed with high efficiency in other species. The liver is also amenable to somatic genome editing, and some delivery methods already allow for efficient editing in the whole liver. In this review, we describe CRISPR-edited animals developed for modelling a broad range of human liver disorders, such as acquired and inherited hepatic metabolic diseases and liver cancers. CRISPR has greatly expanded the repertoire of animal models available for the study of human liver disease, advancing our understanding of their pathophysiology and providing new opportunities to develop novel therapeutic approaches.

6.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L787-L798, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30188746

RESUMO

Allergic asthma is a major cause of morbidity in both pediatric and adult patients. Recent research has highlighted the role of hyaluronan (HA), an extracellular matrix glycosaminoglycan, in asthma pathogenesis. Experimental allergic airway inflammation and clinical asthma are associated with an increase of shorter fragments of HA (sHA), which complex with inter-α-inhibitor heavy chains (HCs) and induce inflammation and airway hyperresponsiveness (AHR). Importantly, the effects of sHA can be antagonized by the physiological counterpart high molecular weight HA (HMWHA). We used a mouse model of house dust mite-induced allergic airway inflammation and demonstrated that instilled HMWHA ameliorated allergic airway inflammation and AHR, even when given after the establishment of allergic sensitization and after challenge exposures. Furthermore, instilled HMWHA reduced the development of HA-HC complexes and the activation of Rho-associated, coiled-coil containing protein kinase 2. We conclude that airway application of HMWHA is a potential treatment for allergic airway inflammation.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Modelos Animais de Doenças , Ácido Hialurônico/administração & dosagem , Inflamação/prevenção & controle , Pyroglyphidae/patogenicidade , Hipersensibilidade Respiratória/prevenção & controle , Animais , Feminino , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Hipersensibilidade Respiratória/etiologia
7.
J Biol Chem ; 292(51): 20845-20858, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29122888

RESUMO

Exposure to pollutants, such as ozone, exacerbates airway inflammation and hyperresponsiveness (AHR). TNF-stimulated gene 6 (TSG-6) is required to transfer inter-α-inhibitor heavy chains (HC) to hyaluronan (HA), facilitating HA receptor binding. TSG-6 is necessary for AHR in allergic asthma, because it facilitates the development of a pathological HA-HC matrix. However, the role of TSG-6 in acute airway inflammation is not well understood. Here, we hypothesized that TSG-6 is essential for the development of HA- and ozone-induced AHR. TSG-6-/- and TSG-6+/+ mice were exposed to ozone or short-fragment HA (sHA), and AHR was assayed via flexiVent. The AHR response to sHA was evaluated in the isolated tracheal ring assay in tracheal rings from TSG-6-/- or TSG-6+/+, with or without the addition of exogenous TSG-6, and with or without inhibitors of Rho-associated, coiled-coil-containing protein kinase (ROCK), ERK, or PI3K. Smooth-muscle cells from mouse tracheas were assayed in vitro for signaling pathways. We found that TSG-6 deficiency protects against AHR after ozone (in vivo) or sHA (in vitro and in vivo) exposure. Moreover, TSG-6-/- tracheal ring non-responsiveness to sHA was reversed by exogenous TSG-6 addition. sHA rapidly activated RhoA, ERK, and Akt in airway smooth-muscle cells, but only in the presence of TSG-6. Inhibition of ROCK, ERK, or PI3K/Akt blocked sHA/TSG-6-mediated AHR. In conclusion, TSG-6 is necessary for AHR in response to ozone or sHA, in part because it facilitates rapid formation of HA-HC complexes. The sHA/TSG-6 effect is mediated by RhoA, ERK, and PI3K/Akt signaling.


Assuntos
alfa-Globulinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Ácido Hialurônico/metabolismo , Hipersensibilidade Respiratória/etiologia , Hipersensibilidade Respiratória/metabolismo , Poluentes Atmosféricos/toxicidade , alfa-Globulinas/química , Animais , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Modelos Animais de Doenças , Ácido Hialurônico/química , Técnicas In Vitro , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Modelos Biológicos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ozônio/toxicidade , Transdução de Sinais/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP
8.
J Vis Exp ; (96): e52403, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25742368

RESUMO

Percutaneous interventions including balloon angioplasty and stenting have been used to restore blood flow in vessels with occlusive vascular disease. While these therapies lead to the rapid restoration of blood flow, these technologies remain limited by restenosis in the case of bare metal stents and angioplasty, or reduced healing and possibly enhanced risk of thrombosis in the case of drug eluting stents. A key pathophysiological mechanism in the formation of restenosis is intimal hyperplasia caused by the activation of vascular smooth muscle cells and inflammation due to arterial stretch and injury. Surgeries that induce arterial injury in genetically modified mice are useful for the mechanistic study of the vascular response to injury but are often technically challenging to perform in mouse models due to the their small size and lack of appropriate sized devices. We describe two approaches for a surgical technique that induces endothelial denudation and arterial stretch in the femoral artery of mice to produce robust neointimal hyperplasia. The first approach creates an arteriotomy in the muscular branch of the femoral artery to obtain vascular access. Following wire injury this arterial branch is ligated to close the arteriotomy. A second approach creates an arteriotomy in the main femoral artery that is later closed through localized cautery. This method allows for vascular access through a larger vessel and, consequently, provides a less technically demanding procedure that can be used in smaller mice. Following either method of arterial injury, a degradable drug delivery patch can be placed over or around the injured artery to deliver therapeutic agents.


Assuntos
Stents Farmacológicos/efeitos adversos , Artéria Femoral/lesões , Implantação de Prótese/efeitos adversos , Animais , Modelos Animais de Doenças , Hiperplasia/etiologia , Camundongos , Implantação de Prótese/métodos , Túnica Íntima/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...