Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954522

RESUMO

X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6-9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials.

2.
Nanophotonics ; 13(14): 2453-2467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836102

RESUMO

We provide a simple method that enables readily acquired experimental data to be used to predict whether or not a candidate molecular material may exhibit strong coupling. Specifically, we explore the relationship between the hybrid molecular/photonic (polaritonic) states and the bulk optical response of the molecular material. For a given material, this approach enables a prediction of the maximum extent of strong coupling (vacuum Rabi splitting), irrespective of the nature of the confined light field. We provide formulae for the upper limit of the splitting in terms of the molar absorption coefficient, the attenuation coefficient, the extinction coefficient (imaginary part of the refractive index) and the absorbance. To illustrate this approach, we provide a number of examples, and we also discuss some of the limitations of our approach.

3.
Langmuir ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934738

RESUMO

Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that cis-diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C). Quartz crystal microbalance studies indicated an adsorbed amount, Γ, of 158 mg m-2 for vesicle adsorption onto such brushes, whereas negligible adsorption (Γ = 0.1 mg m-2) was observed for a control experiment conducted using a cis-diol-functionalized brush. Scanning electron microscopy and ellipsometry studies indicated a mean surface coverage of around 30% at the brush surface, which suggests reasonably efficient chemical adsorption. Importantly, such vesicles can be conveniently loaded with a model enzyme (horseradish peroxidase, HRP) using an aqueous polymerization-induced self-assembly formulation. Moreover, the immobilized vesicles remained permeable toward small molecules while retaining their enzyme payload. The enzymatic activity of such HRP-loaded vesicles was demonstrated using a well-established colorimetric assay. In principle, this efficient vesicle-on-brush strategy can be applied to a wide range of enzymes and functional proteins for the design of next-generation immobilized nanoreactors for enzyme-mediated catalysis.

4.
Biomacromolecules ; 25(5): 2990-3000, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38696732

RESUMO

Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032-12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m-2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m-2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3.


Assuntos
Arginina , Nanopartículas , Nanopartículas/química , Adsorção , Arginina/química , Concentração de Íons de Hidrogênio , Polimerização , Dióxido de Silício/química , Polímeros/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/síntese química
5.
Langmuir ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320303

RESUMO

Sterically stabilized diblock copolymer nanoparticles with a well-defined spherical morphology and tunable diameter were prepared by RAFT aqueous emulsion polymerization of benzyl methacrylate at 70 °C. The steric stabilizer precursor used for these syntheses contained pendent cis-diol groups, which means that such nanoparticles can react with a suitable aldehyde-functional surface via acetal bond formation. This principle is examined herein by growing an aldehyde-functionalized polymer brush from a planar silicon wafer and studying the extent of nanoparticle adsorption onto this model substrate from aqueous solution at 25 °C using a quartz crystal microbalance (QCM). The adsorbed amount, Γ, depends on both the nanoparticle diameter and the solution pH, with minimal adsorption observed at pH 7 or 10 and substantial adsorption achieved at pH 4. Variable-temperature QCM studies provide strong evidence for chemical adsorption, while scanning electron microscopy images recorded for the nanoparticle-coated brush surface after drying indicate mean surface coverages of up to 62%. This fundamental study extends our understanding of the chemical adsorption of nanoparticles on soft substrates.

6.
Langmuir ; 40(1): 335-347, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117209

RESUMO

Pertinent to cryopreservation as well as energy storage and batteries, nonaqueous electrolytes and their mixtures with water were investigated. In particular, specific ion-induced effects on the modulation of a poly(N-isopropylacrylamide) (PNIPAM) brush were investigated in various dimethyl sulfoxide (DMSO)-water solvent mixtures. Spectroscopic ellipsometry and neutron reflectometry were employed to probe changes in brush swelling and structure, respectively. In water-rich solvents (i.e., pure water and 6 mol % DMSO), PNIPAM undergoes a swollen to collapsed thermotransition with increasing temperature, whereby a forward Hofmeister series was noted; K+ and Li+ electrolytes composed of SCN- and I- salted-in (stabilized) PNIPAM chains, and electrolytes of Cl- and Br- salted-out (destabilized) the polymer. The cation was seen to play a lesser role than that of the anion, merely modulating the magnitude of the anion effect. In 70 mol % DMSO, a collapsed to swollen thermotransition was noted for PNIPAM. Here, concentration-dependent specific ion effects were observed; a forward series was observed in 0.2 mol % electrolytes, whereas increasing the electrolyte concentration to 0.9 mol % led to a series reversal. While no thermotransition was observed in pure DMSO, a solvent-induced specific ion series reversal was noted; SCN- destabilized the brush and Cl- stabilized the brush. Both series reversals are attributed to the delicate balance of interactions between the solvent, solute (ion), and substrate (brush). Namely, the stability of the solvent clusters was hypothesized to drive polymer solvation.

7.
J Colloid Interface Sci ; 651: 334-345, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544222

RESUMO

HYPOTHESIS: Submicron oil droplets stabilized using aldehyde-functionalized nanoparticles should adhere to the primary amine groups present at the surface of sheep nasal mucosal tissue via Schiff base chemistry. EXPERIMENTS: Well-defined sterically-stabilized diblock copolymer nanoparticles of 20 nm diameter were prepared in the form of concentrated aqueous dispersions via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) using a water-soluble methacrylic precursor bearing cis-diol groups. Some of these hydroxyl-functional nanoparticles were then selectively oxidized using an aqueous solution of sodium periodate to form a second batch of nanoparticles bearing pendent aldehyde groups within the steric stabilizer chains. Subjecting either hydroxyl- or aldehyde-functional nanoparticles to high-shear homogenization with a model oil (squalane) produced oil-in-water Pickering macroemulsions of 20-30 µm diameter. High-pressure microfluidization of such macroemulsions led to formation of the corresponding Pickering nanoemulsions with a mean droplet diameter of around 200 nm. Quartz crystal microbalance (QCM) experiments were used to examine adsorption of both nanoparticles and oil droplets onto a model planar substrate bearing primary amine groups, while a fluorescence microscopy-based mucoadhesion assay was developed to assess adsorption of the oil droplets onto sheep nasal mucosal tissue. FINDINGS: Squalane droplets coated with aldehyde-functional nanoparticles adhered significantly more strongly to sheep nasal mucosal tissue than those coated with the corresponding hydroxyl-functional nanoparticles. This difference was attributed to the formation of surface imine bonds via Schiff base chemistry and was also observed for the two types of nanoparticles alone in QCM studies. Preliminary biocompatibility studies using planaria indicated only mild toxicity for these new mucoadhesive Pickering nanoemulsions, suggesting potential applications for the localized delivery of hydrophobic drugs.

8.
Chem Mater ; 35(15): 6109-6122, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576584

RESUMO

Dynamic covalent chemistry has been exploited to prepare numerous examples of adaptable polymeric materials that exhibit unique properties. Herein, the chemical adsorption of aldehyde-functional diblock copolymer spherical nanoparticles onto amine-functionalized surface-grafted polymer brushes via dynamic Schiff base chemistry is demonstrated. Initially, a series of cis-diol-functional sterically-stabilized spheres of 30-250 nm diameter were prepared via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization. The pendent cis-diol groups within the steric stabilizer chains of these precursor nanoparticles were then oxidized using sodium periodate to produce the corresponding aldehyde-functional spheres. Similarly, hydrophilic cis-diol-functionalized methacrylic brushes grafted from a planar silicon surface using activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) were selectively oxidized to generate the corresponding aldehyde-functional brushes. Ellipsometry and X-ray photoelectron spectroscopy were used to confirm brush oxidation, while scanning electron microscopy studies demonstrated that the nanoparticles did not adsorb onto a cis-diol-functional precursor brush. Subsequently, the aldehyde-functional brushes were treated with excess small-molecule diamine, and the resulting imine linkages were converted into secondary amine bonds via reductive amination. The resulting primary amine-functionalized brushes formed multiple dynamic imine bonds with the aldehyde-functional diblock copolymer spheres, leading to a mean surface coverage of approximately 0.33 on the upper brush layer surface, regardless of the nanoparticle size. Friction force microscopy studies of the resulting nanoparticle-decorated brushes enabled calculation of friction coefficients, which were compared to that measured for the bare aldehyde-functional brush. Friction coefficients were reasonably consistent across all surfaces except when particle size was comparable to the size of the probe tip. In this case, differences were ascribed to an increase in contact area between the tip and the brush-nanoparticle layer. This new model system enhances our understanding of nanoparticle adsorption onto hydrophilic brush layers.

9.
Macromolecules ; 56(5): 2070-2080, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36938510

RESUMO

Surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) is used to polymerize a cis-diol-functional methacrylic monomer (herein denoted GEO5MA) from planar silicon wafers. Ellipsometry studies indicated dry brush thicknesses ranging from 40 to 120 nm. The hydrophilic PGEO5MA brush is then selectively oxidized using sodium periodate to produce an aldehyde-functional hydrophilic PAGEO5MA brush. This post-polymerization modification strategy provides access to significantly thicker brushes compared to those obtained by surface-initiated ARGET ATRP of the corresponding aldehyde-functional methacrylic monomer (AGEO5MA). The much slower brush growth achieved in the latter case is attributed to the relatively low aqueous solubility of the AGEO5MA monomer. X-ray photoelectron spectroscopy (XPS) analysis confirmed that precursor PGEO5MA brushes were essentially fully oxidized to the corresponding PAGEO5MA brushes within 30 min of exposure to a dilute aqueous solution of sodium periodate at 22 °C. PAGEO5MA brushes were then functionalized via Schiff base chemistry using an amino acid (histidine), followed by reductive amination with sodium cyanoborohydride. Subsequent XPS analysis indicated that the mean degree of histidine functionalization achieved under optimized conditions was approximately 81%. Moreover, an XPS depth profiling experiment confirmed that the histidine groups were uniformly distributed throughout the brush layer. Surface ζ potential measurements indicated a significant change in the electrophoretic behavior of the zwitterionic histidine-functionalized brush relative to that of the non-ionic PGEO5MA precursor brush. The former brush exhibited cationic character at low pH and anionic character at high pH, with an isoelectric point being observed at around pH 7. Finally, quartz crystal microbalance studies indicated minimal adsorption of a model globular protein (BSA) on a PGEO5MA brush-coated substrate, whereas strong protein adsorption via Schiff base chemistry occurred on a PAGEO5MA brush-coated substrate.

10.
Macromol Rapid Commun ; 44(16): e2200903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36534428

RESUMO

RAFT aqueous emulsion polymerization of isopropylideneglycerol monomethacrylate (IPGMA) is used to prepare a series of PGEO5MA46 -PIPGMAy nanoparticles, where PGEO5MA is a hydrophilic methacrylic steric stabilizer block bearing pendent cis-diol groups. TEM studies confirm a spherical morphology while dynamic light scattering (DLS) analysis indicated that the z-average particle diameter can be adjusted by varying the target degree of polymerization for the core-forming PIPGMA block. Periodate oxidation is used to convert the cis-diol groups on PGEO5MA46 -PIPGMA500 and PGEO5MA46 -PIPGMA1000 nanoparticles into the analogous aldehyde-functionalized nanoparticles, which are then reacted with histidine via reductive amination. In each case, the extent of functionalization is more than 99% as determined by 1 H NMR spectroscopy. Aqueous electrophoresis studies indicate that such derivatization converts initially neutral nanoparticles into zwitterionic nanoparticles with an isoelectric point at pH 7. DLS studies confirm that such histidine-derivatized nanoparticles remain colloidally stable over a wide pH range. A quartz crystal microbalance is employed at 25°C to assess the adsorption of both the cis-diol- and histidine-functionalized nanoparticles onto planar stainless steel at pH 6. The histidine-bearing nanoparticles adsorb much more strongly than their cis-diol counterparts. For the highest adsorbed amount of 70.5 mg m-2 , SEM indicates a fractional surface coverage of 0.23 for the adsorbed nanoparticles.


Assuntos
Histidina , Nanopartículas , Histidina/química , Aço Inoxidável , Adsorção , Polímeros/química , Nanopartículas/química
11.
J Colloid Interface Sci ; 634: 983-994, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36571860

RESUMO

HYPOTHESIS: Specific ion effects govern myriad biological phenomena, including protein-ligand interactions and enzyme activity. Despite recent advances, detailed understanding of the role of ion hydrophobicity in specific ion effects, and the intersection with hydrotropic effects, remains elusive. Short chain fatty acid sodium salts are simple amphiphiles which play an integral role in our gastrointestinal health. We hypothesise that increasing a fatty acid's hydrophobicity will manifest stronger salting-out behaviour. EXPERIMENTS: Here we study the effect of these amphiphiles on an exemplar thermoresponsive polymer brush system, conserving the carboxylate anion identity while varying anion hydrophobicity via the carbon chain length. Ellipsometry and quartz crystal microbalance with dissipation monitoring were used to characterise the thermoresponse and viscoelasticity of the brush, respectively, whilst neutron reflectometry was used to reveal the internal structure of the brush. Diffusion-ordered nuclear magnetic resonance spectroscopy and computational investigations provide insight into polymer-ion interactions. FINDINGS: Surface sensitive techniques unveiled a non-monotonic trend in salting-out ability with increasing anion hydrophobicity, revealing the bundle-like morphology of the ion-collapsed system. An intersection between ion-specific and hydrotropic effects was observed both experimentally and computationally; trending from good anti-hydrotrope towards hydrotropic behaviour with increasing anion hydrophobicity, accompanying a change in hydrophobic hydration.


Assuntos
Polímeros , Cloreto de Sódio , Polímeros/química , Ânions/química , Interações Hidrofóbicas e Hidrofílicas , Hidrocarbonetos
12.
J Colloid Interface Sci ; 631(Pt A): 260-271, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36395740

RESUMO

HYPOTHESIS: Anionic surfactants have been reported to interact with poly(N-isopropyl acrylamide) (PNIPAM), suppressing its thermoresponse. Scattering and NMR studies of the anionic sodium dodecylsulfate (SDS) system propose that the PNIPAM-surfactant interaction is purely hydrophobic. However, prior phenomenological investigations of a range of surfactant identities (anionic, cationic, nonionic) show that only anionic surfactants affect the thermoresponse and conformation of PNIPAM, implying that the hydrophilic head-group also contributes. Crucially, the phenomenological experiments do not measure the affinity of the tested surfactants to the polymer, only their effect on its behaviour. EXPERIMENTS: We study the adsorption of six surfactants within a planar PNIPAM brush system, elucidating the polymer conformation, thermoresponse, and surfactant adsorption kinetics using ellipsometry, neutron reflectometry (NR), optical reflectometry and the quartz crystal microbalance technique. NR is used to measure the distribution of surfactants within the brush. FINDINGS: We find that only anionic surfactants modify the structure and thermoresponse of PNIPAM, with the greater affinity of anionic surfactants for PNIPAM (relative to cationic and nonionic surfactants) being the primary reason for this behaviour. These results show that the surfactant head-group has a more critical role in mediating PNIPAM-surfactant interaction than previously reported. Taking inspiration from prior molecular dynamics work on the PEO-surfactant system, we propose an interaction mechanism for PNIPAM and SDS that reconciles evidence for hydrophobic interaction with the observed head-group-dependent affinity.


Assuntos
Surfactantes Pulmonares , Tensoativos , Resinas Acrílicas , Dodecilsulfato de Sódio , Excipientes , Polímeros
13.
J Colloid Interface Sci ; 586: 292-304, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189318

RESUMO

HYPOTHESIS: Grafted poly(ethylene glycol) methyl ether methacrylate (POEGMA) copolymer brushes change conformation in response to temperature ('thermoresponse'). In the presence of different ions the thermoresponse of these coatings is dramatically altered. These effects are complex and poorly understood with no all-inclusive predictive theory of specific ion effects. As natural environments are composed of mixed electrolytes, it is imperative we understand the interplay of different ions for future applications. We hypothesise anion mixtures from the same end of the Hofmeister series (same-type anions) will exhibit non-additive and competitive behaviour. EXPERIMENTS: The behaviour of POEGMA brushes, synthesised via surface-initiated ARGET-ATRP, in both single and mixed aqueous electrolyte solutions was characterised with ellipsometry and neutron reflectometry as a function of temperature. FINDINGS: In mixed fluoride and chloride aqueous electrolytes (salting-out ions), or mixed thiocyanate and iodide aqueous electrolytes (salting-in ions), a non-monotonic concentration-dependent influence of the two anions on the thermoresponse of the brush was observed. A new term, δ, has been defined to quantitively describe synergistic or antagonistic behaviour. This study determined the specific ion effects imparted by salting-out ions are dependent on available solvent molecules, whereas the influence of salting-in ions is dependent on the interactions of the anions and polymer chains.

14.
Langmuir ; 36(42): 12460-12472, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33105998

RESUMO

Multi-stimulus responsive poly(2-(2-methoxyethoxy)ethyl methacrylate-co-2-(diethylamino)ethyl methacrylate) [P(MEO2MA-co-DEA)] 80:20 mol % copolymer brushes were synthesized on planar silica substrates via surface-initiated activators continuously regenerated via electron transfer atom transfer radical polymerization. Brush thickness was sensitive to changes in pH and temperature as monitored with ellipsometry. At low pH, the brush is charged and swollen, while at high pH, the brush is uncharged and more collapsed. Clear thermoresponsive behavior is also observed with the brush more swollen at low temperatures compared to high temperatures at both high and low pH. Neutron reflectometry was used to determine the polymer volume fraction profiles (VFPs) at various pH values and temperatures. A region of lower polymer content, or a depletion region, near the substrate is present in all of the experimental polymer VFPs, and it is more pronounced at low pH (high charge) and less so at high pH (low charge). Polymer VFPs calculated through numerical self-consistent field theory suggest that enrichment of DEA monomers near the substrate results in the experimentally observed non-monotonic VFPs. Adsorption of DEA monomers to the substrate prior to initiation of polymerization could give rise to DEA segment-enriched region proximal to the substrate.

15.
Langmuir ; 36(21): 5765-5777, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32364745

RESUMO

Poly(2-(2-methoxyethoxy)ethyl methacrylate) (PMEO2MA), a thermoresponsive polymer with a lower critical solution temperature of ∼28 °C, and poly(2-(diethylamino)ethyl methacrylate) (PDEA), a weak polybase with an apparent pKa of ∼7.5, have been statistically copolymerized using activators continuously regenerated via electron transfer atom transfer radical polymerization to form multi-stimulus-responsive polymer brushes. The stimulus-responsive behavior of these brushes has been investigated with ellipsometry and numerical self-consistent field (nSCF) theory. The pH- and thermoresponsive behaviors of a PDEA homopolymer brush were investigated experimentally in order to benchmark the nSCF theory calculations. nSCF theory was able to reproduce the responsive behavior of PDEA and PMEO2MA homopolymer brushes. Three copolymer compositions (90:10, 70:30, and 50:50 mol % MEO2MA:DEA) were investigated experimentally with pH ramps performed at low and high temperatures and temperature ramps performed at low and high pH. A broader range of compositions were investigated with nSCF theory and compared to the experimental results, with the nSCF calculations able to capture the general behavior of the homopolymer and copolymer brushes. The responsive behavior of each brush to a given stimulus (temperature or pH) was dependent on both the polymer composition and environment (temperature or pH). The influence of pH on the brush increased with higher DEA mol % with a copolymer brush response transitioning from temperature-dominant to pH-dominant. The temperature response of PMEO2MA was completely masked at low and high pH values by the presence of at least 30 mol % polybase in the copolymer.

16.
Langmuir ; 35(33): 10818-10830, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31339320

RESUMO

The stability of poly(N-isopropylacrylamide) (PNIPAM) brush-modified colloidal silica particles was compared to asymmetric and symmetric PNIPAM brush direct force measurements in the presence of 1, 10, and 500 mM aqueous salt solution of KCl, KNO3, and KSCN between 10 and 45 °C. Dynamic light scattering measurements highlighted subtle variations in the salt-mediated thermoresponse, while atomic force microscopy (AFM) force curves between a bare silica or PNIPAM brush-modified colloid probe and a planar PNIPAM brush elucidated differences in brush interactions. The AFM force curves in the presence of KCl primarily revealed steric interactions between the surfaces, while KNO3 and KSCN solutions exhibited electrosteric interactions on approach as a function of the chaotropic nature of the ion and the solution concentration. The symmetric PNIPAM brush interaction highlighted significant variations between KCl and KSCN at 1 and 500 mM concentrations, while the approach and retraction force curves were relatively similar at 10 mM concentration. The combination of these techniques enabled the stability of PNIPAM brush-modified colloidal dispersions in the presence of electrolyte to be better understood with specific ion binding and the solution Debye length playing a significant role.

17.
Phys Chem Chem Phys ; 21(8): 4650-4662, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30747169

RESUMO

The temperature induced swelling/collapse transition of poly(oligoethylene glycol methacrylate) (POEGMA) brushes has been investigated in electrolyte solutions comprised of multiple anions. The behaviour of a POEGMA brush in mixed salt environments of potassium acetate (KCH3COO, causes collapse) and thiocyanate (KSCN, causes swelling), two ions at opposite ends of the Hofmeister series, has been monitored with neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D). These techniques revealed that the balance of the swelling/collapse influence of the two ions on the structure of the brush is temperature dependent. At low temperatures in mixed salt environments, the influence of the acetate and thiocyanate ions appears additive, antagonistic and approximately equal in magnitude, with brush thickness and dissipation similar to the brush in the absence of electrolyte. At higher temperatures, the influence of the acetate ion diminishes, resulting in an increase in the relative influence of the thiocyanate ion on the brush conformation. These temperature dependent specific ion effects are attributed to increased steric crowding in the brush, along with an increased affinity of the thiocyanate ion for the polymer at higher temperatures.

18.
J Colloid Interface Sci ; 526: 429-450, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29763821

RESUMO

Thermoresponsive polymers have received significant research attention as smart materials with particular interest in biomedical applications. The composition and architecture are known to strongly influence the thermoresponsive properties of the materials. For example, the strong overlap of end-grafted polymer chains in polymer brushes leads to a broader collapse transition relative to linear ungrafted chains as well as temperature dependent adhesion. The temperature response of free polymer has been widely reported to depend on the concentration and identity of ions in solution and is further modified by the composition of the solvent and presence of cosolutes. However, the influence of polymer architecture on these specific ion effects is relatively unknown. Herein, we compare the current understanding of specific ion effects on free polymer chains and gels with recent studies of polymer brushes. Further studies on mixed salt systems are found to be the next step to predicting the behaviour of these materials in biological systems.

19.
Environ Manage ; 54(4): 814-27, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25129387

RESUMO

Hawaii's game animals are all non-native species, which provokes human-wildlife conflict among stakeholders. The management of human-wildlife conflict in Hawaii is further complicated by the discrete nature of island communities. Our goal was to understand the desires and perceived values or impacts of game held by residents of Hawaii regarding six game species [pigs (Sus scrofa), goats (Capra hircus), mouflon (Ovis musimon), axis deer (Axis axis), turkeys (Melagris gallopavo), and doves (Geopelia striata)]. We measured the desired abundance of game on the six main Hawaiian Islands using the potential for conflict index and identified explanatory variables for those desires via recursive partitioning. In 2011 we surveyed 5,407 residents (2,360 random residents and 3,047 pre-identified stakeholders). Overall 54.5 and 27.6 % of the emailed and mailed surveys were returned (n = 1,510). A non-respondent survey revealed that respondents and non-respondents had similar interest in wildlife, and a similar education level. The desired abundance of game differed significantly among stakeholders, species, and islands. The desired abundance scores were higher for axis deer, mouflon, and turkeys compared to pigs, goats or doves. Enjoyment at seeing game and the cultural value of game were widespread explanatory variables for desired abundance. Models for Lanai emphasized the economic value of game, whereas models for Maui identified the potential for game to contaminate soil and water. Models for Oahu and Kauai revealed concern for human health and safety. Given our findings we recommend managers design separate management plans for each island taking into consideration the values of residents.


Assuntos
Animais Selvagens , Agricultura , Animais , Coleta de Dados , Havaí , Humanos , Percepção , Densidade Demográfica , Recreação
20.
PLoS One ; 7(7): e39775, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22911690

RESUMO

BACKGROUND: Individuals with schizophrenia show increased smoking rates which may be due to a beneficial effect of nicotine on cognition and information processing. Decreased amplitude of the P50 and N100 auditory event-related potentials (ERPs) is observed in patients. Both measures show normalization following administration of nicotine. Recent studies identified an association between deficits in auditory evoked gamma oscillations and impaired information processing in schizophrenia, and there is evidence that nicotine normalizes gamma oscillations. Although the role of nicotine receptor subtypes in augmentation of ERPs has received some attention, less is known about how these receptor subtypes regulate the effect of nicotine on evoked gamma activity. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects of nicotine, the α7 nicotine receptor antagonist methyllycaconitine (MLA) the α4ß4/α4ß2 nicotine receptor antagonist dihydro-beta-erythroidine (DHßE), and the α4ß2 agonist AZD3480 on P20 and N40 amplitude as well as baseline and event-related gamma oscillations in mice, using electrodes in hippocampal CA3. Nicotine increased P20 amplitude, while DHßE blocked nicotine-induced enhancements in P20 amplitude. Conversely, MLA did not alter P20 amplitude either when presented alone or with nicotine. Administration of the α4ß2 specific agonist AZD3480 did not alter any aspect of P20 response, suggesting that DHßE blocks the effects of nicotine through a non-α4ß2 receptor specific mechanism. Nicotine and AZD3480 reduced N40 amplitude, which was blocked by both DHßE and MLA. Finally, nicotine significantly increased event-related gamma, as did AZD3480, while DHßE but not MLA blocked the effect of nicotine on event-related gamma. CONCLUSIONS/SIGNIFICANCE: These results support findings showing that nicotine-induced augmentation of P20 amplitude occurs via a DHßE sensitive mechanism, but suggests that this does not occur through activation of α4ß2 receptors. Event-related gamma is strongly influenced by activation of α4ß2, but not α7, receptor subtypes, while disruption of N40 amplitude requires the activation of multiple receptor subtypes.


Assuntos
Sinalização do Cálcio , Potenciais Evocados Auditivos , Receptores Nicotínicos/metabolismo , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Potenciais Evocados P300/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Nicotina/farmacologia , Antagonistas Nicotínicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...