Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Sci Rep ; 13(1): 5146, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991106

RESUMO

Late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease (Batten disease) is a rare pediatric disease, with symptom development leading to clinical diagnosis. Early diagnosis and effective tracking of disease progression are required for treatment. We hypothesize that brain volumetry is valuable in identifying CLN2 disease at an early stage and tracking disease progression in a genetically modified miniswine model. CLN2R208X/R208X miniswine and wild type controls were evaluated at 12- and 17-months of age, correlating to early and late stages of disease progression. Magnetic resonance imaging (MRI) T1- and T2-weighted data were acquired. Total intercranial, gray matter, cerebrospinal fluid, white matter, caudate, putamen, and ventricle volumes were calculated and expressed as proportions of the intracranial volume. The brain regions were compared between timepoints and cohorts using Gardner-Altman plots, mean differences, and confidence intervals. At an early stage of disease, the total intracranial volume (- 9.06 cm3), gray matter (- 4.37% 95 CI - 7.41; - 1.83), caudate (- 0.16%, 95 CI - 0.24; - 0.08) and putamen (- 0.11% 95 CI - 0.23; - 0.02) were all notably smaller in CLN2R208X/R208X miniswines versus WT, while cerebrospinal fluid was larger (+ 3.42%, 95 CI 2.54; 6.18). As the disease progressed to a later stage, the difference between the gray matter (- 8.27%, 95 CI - 10.1; - 5.56) and cerebrospinal fluid (+ 6.88%, 95 CI 4.31; 8.51) continued to become more pronounced, while others remained stable. MRI brain volumetry in this miniswine model of CLN2 disease is sensitive to early disease detection and longitudinal change monitoring, providing a valuable tool for pre-clinical treatment development and evaluation.


Assuntos
Lipofuscinoses Ceroides Neuronais , Tripeptidil-Peptidase 1 , Criança , Humanos , Aminopeptidases , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases , Progressão da Doença , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Lipofuscinoses Ceroides Neuronais/patologia , Serina Proteases , Suínos , Animais
2.
Neurotherapeutics ; 19(6): 1905-1919, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36100791

RESUMO

CLN2 Batten disease is a lysosomal disorder in which pathogenic variants in CLN2 lead to reduced activity in the enzyme tripeptidyl peptidase 1. The disease typically manifests around 2 to 4 years of age with developmental delay, ataxia, seizures, inability to speak and walk, and fatality between 6 and 12 years of age. Multiple Cln2 mouse models exist to better understand the etiology of the disease; however, these models are unable to adequately recapitulate the disease due to differences in anatomy and physiology, limiting their utility for therapeutic testing. Here, we describe a new CLN2R208X/R208X porcine model of CLN2 disease. We present comprehensive characterization showing behavioral, pathological, and visual phenotypes that recapitulate those seen in CLN2 patients. CLN2R208X/R208X miniswine present with gait abnormalities at 6 months of age, ERG waveform declines at 6-9 months, vision loss at 11 months, cognitive declines at 12 months, seizures by 15 months, and early death at 18 months due to failure to thrive. CLN2R208X/R208X miniswine also showed classic storage material accumulation and glial activation in the brain at 6 months, and cortical atrophy at 12 months. Thus, the CLN2R208X/R208X miniswine model is a valuable resource for biomarker discovery and therapeutic development in CLN2 disease.


Assuntos
Lipofuscinoses Ceroides Neuronais , Camundongos , Animais , Suínos , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/uso terapêutico , Aminopeptidases/genética , Aminopeptidases/uso terapêutico , Serina Proteases/genética , Serina Proteases/uso terapêutico , Fenótipo , Convulsões/tratamento farmacológico
3.
Sci Rep ; 11(1): 9068, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907199

RESUMO

The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software library, ANTs, is built upon, and contributes to, the NIH-sponsored Insight Toolkit. Founded in 2008 with the highly regarded Symmetric Normalization image registration framework, the ANTs library has since grown to include additional functionality. Recent enhancements include statistical, visualization, and deep learning capabilities through interfacing with both the R statistical project (ANTsR) and Python (ANTsPy). Additionally, the corresponding deep learning extensions ANTsRNet and ANTsPyNet (built on the popular TensorFlow/Keras libraries) contain several popular network architectures and trained models for specific applications. One such comprehensive application is a deep learning analog for generating cortical thickness data from structural T1-weighted brain MRI, both cross-sectionally and longitudinally. These pipelines significantly improve computational efficiency and provide comparable-to-superior accuracy over multiple criteria relative to the existing ANTs workflows and simultaneously illustrate the importance of the comprehensive ANTsX approach as a framework for medical image analysis.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Ecossistema , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Software
4.
JCO Clin Cancer Inform ; 4: 299-309, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32216636

RESUMO

PURPOSE: We present SlicerDMRI, an open-source software suite that enables research using diffusion magnetic resonance imaging (dMRI), the only modality that can map the white matter connections of the living human brain. SlicerDMRI enables analysis and visualization of dMRI data and is aimed at the needs of clinical research users. SlicerDMRI is built upon and deeply integrated with 3D Slicer, a National Institutes of Health-supported open-source platform for medical image informatics, image processing, and three-dimensional visualization. Integration with 3D Slicer provides many features of interest to cancer researchers, such as real-time integration with neuronavigation equipment, intraoperative imaging modalities, and multimodal data fusion. One key application of SlicerDMRI is in neurosurgery research, where brain mapping using dMRI can provide patient-specific maps of critical brain connections as well as insight into the tissue microstructure that surrounds brain tumors. PATIENTS AND METHODS: In this article, we focus on a demonstration of SlicerDMRI as an informatics tool to enable end-to-end dMRI analyses in two retrospective imaging data sets from patients with high-grade glioma. Analyses demonstrated here include conventional diffusion tensor analysis, advanced multifiber tractography, automated identification of critical fiber tracts, and integration of multimodal imagery with dMRI. RESULTS: We illustrate the ability of SlicerDMRI to perform both conventional and advanced dMRI analyses as well as to enable multimodal image analysis and visualization. We provide an overview of the clinical rationale for each analysis along with pointers to the SlicerDMRI tools used in each. CONCLUSION: SlicerDMRI provides open-source and clinician-accessible research software tools for dMRI analysis. SlicerDMRI is available for easy automated installation through the 3D Slicer Extension Manager.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Software/normas , Idoso , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
5.
Ann Neurol ; 87(5): 751-762, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32105364

RESUMO

OBJECTIVE: The identification of sensitive biomarkers is essential to validate therapeutics for Huntington disease (HD). We directly compare structural imaging markers across the largest collective imaging HD dataset to identify a set of imaging markers robust to multicenter variation and to derive upper estimates on sample sizes for clinical trials in HD. METHODS: We used 1 postprocessing pipeline to retrospectively analyze T1-weighted magnetic resonance imaging (MRI) scans from 624 participants at 3 time points, from the PREDICT-HD, TRACK-HD, and IMAGE-HD studies. We used mixed effects models to adjust regional brain volumes for covariates, calculate effect sizes, and simulate possible treatment effects in disease-affected anatomical regions. We used our model to estimate the statistical power of possible treatment effects for anatomical regions and clinical markers. RESULTS: We identified a set of common anatomical regions that have similarly large standardized effect sizes (>0.5) between healthy control and premanifest HD (PreHD) groups. These included subcortical, white matter, and cortical regions and nonventricular cerebrospinal fluid (CSF). We also observed a consistent spatial distribution of effect size by region across the whole brain. We found that multicenter studies were necessary to capture treatment effect variance; for a 20% treatment effect, power of >80% was achieved for the caudate (n = 661), pallidum (n = 687), and nonventricular CSF (n = 939), and, crucially, these imaging markers provided greater power than standard clinical markers. INTERPRETATION: Our findings provide the first cross-study validation of structural imaging markers in HD, supporting the use of these measurements as endpoints for both observational studies and clinical trials. ANN NEUROL 2020;87:751-762.


Assuntos
Doença de Huntington/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Adulto , Ensaios Clínicos como Assunto , Feminino , Humanos , Doença de Huntington/patologia , Doença de Huntington/terapia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Estudos Observacionais como Assunto , Estudos Retrospectivos
6.
J Digit Imaging ; 32(6): 1118, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31485952

RESUMO

This paper had published originally without open access, but has since been republished with open access.

7.
JAMA Neurol ; 76(11): 1375-1385, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31403680

RESUMO

IMPORTANCE: In Huntington disease (HD), mutation severity is defined by the length of the CAG trinucleotide sequence, a well-known predictor of clinical onset age. The association with disease trajectory is less well characterized. Quantifiable summary measures of trajectory applicable over decades of early disease progression are lacking. An accurate model of the age-CAG association with early progression is critical to clinical trial design, informing both sample size and intervention timing. OBJECTIVE: To succinctly capture the decades-long early progression of HD and its dependence on CAG repeat length. DESIGN, SETTING, AND PARTICIPANTS: Prospective study at 4 academic HD treatment and research centers. Participants were the combined sample from the TRACK-HD and Track-On HD studies consisting of 290 gene carriers (presymptomatic to stage II), recruited from research registries at participating centers, and 153 nonbiologically related controls, generally spouses or friends. Recruitment was targeted to match a balanced, prespecified spectrum of age, CAG repeat length, and diagnostic status. In the TRACK-HD and Track-On HD studies, 13 and 5 potential participants, respectively, failed study screening. Follow-up ranged from 0 to 6 years. The study dates were January 2008 to November 2014. These analyses were performed between December 2015 and January 2019. MAIN OUTCOMES AND MEASURES: The outcome measures were principal component summary scores of motor-cognitive function and of brain volumes. The main outcome was the association of these scores with age and CAG repeat length. RESULTS: We analyzed 2065 visits from 443 participants (247 female [55.8%]; mean [SD] age, 44.4 [10.3] years). Motor-cognitive measures were highly correlated and had similar CAG repeat length-dependent associations with age. A composite summary score accounted for 67.6% of their combined variance. This score was well approximated by a score combining 3 items (total motor score, Symbol Digit Modalities Test, and Stroop word reading) from the Unified Huntington's Disease Rating Scale. For either score, initial progression age and then acceleration rate were highly CAG repeat length dependent. The acceleration continues through at least stage II disease. In contrast, 3 distinct patterns emerged among brain measures (basal ganglia, gray matter, and a combination of whole-brain, ventricular, and white matter volumes). The basal ganglia pattern showed considerable change in even the youngest participants but demonstrated minimal acceleration of loss with aging. Each clinical and brain summary score was strongly associated with the onset and rate of decline in total functional capacity. CONCLUSIONS AND RELEVANCE: Results of this study suggest that succinct summary measures of function and brain loss characterize HD progression across a wide disease span. CAG repeat length strongly predicts their decline rate. This work aids our understanding of the age and CAG repeat length-dependent association between changes in the brain and clinical manifestations of HD.

8.
J Huntingtons Dis ; 8(2): 199-219, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30932891

RESUMO

BACKGROUND: Gray matter (GM) atrophy in the striatum and across the brain is a consistently reported feature of the Huntington Disease (HD) prodrome. More recently, widespread prodromal white matter (WM) degradation has also been detected. However, longitudinal WM studies are limited and conflicting, and most analyses comparing WM and clinical functioning have also been cross-sectional. OBJECTIVE: We simultaneously assessed changes in WM and cognitive and motor functioning at various prodromal HD stages. METHODS: Data from 1,336 (1,047 prodromal, 289 control) PREDICT-HD participants were analyzed (3,700 sessions). MRI images were used to create GM, WM, and cerebrospinal fluid probability maps. Using source-based morphometry, independent component analysis was applied to WM probability maps to extract covarying spatial patterns and their subject profiles. WM profiles were analyzed in two sets of linear mixed model (LMM) analyses: one to compare WM profiles across groups cross-sectionally and longitudinally, and one to concurrently compare WM profiles and clinical variables cross-sectionally and longitudinally within each group. RESULTS: Findings illustrate widespread prodromal changes in GM-adjacent-WM, with premotor, supplementary motor, middle frontal and striatal changes early in the prodrome that subsequently extend sub-gyrally with progression. Motor functioning agreed most with WM until the near-onset prodromal stage, when Stroop interference was the best WM indicator. Across groups, Trail-Making Test part A outperformed other cognitive variables in its similarity to WM, particularly cross-sectionally. CONCLUSIONS: Results suggest that distinct regions coincide with cognitive compared to motor functioning. Furthermore, at different prodromal stages, distinct regions appear to align best with clinical functioning. Thus, the informativeness of clinical measures may vary according to the type of data available (cross-sectional or longitudinal) as well as age and CAG-number.


Assuntos
Encéfalo/patologia , Doença de Huntington/patologia , Sintomas Prodrômicos , Substância Branca/patologia , Encéfalo/diagnóstico por imagem , Estudos Transversais , Humanos , Doença de Huntington/diagnóstico por imagem , Estudos Longitudinais , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
9.
J Int Neuropsychol Soc ; 25(5): 462-469, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30806337

RESUMO

OBJECTIVES: Apathy is a debilitating symptom of Huntington's disease (HD) and manifests before motor diagnosis, making it an excellent therapeutic target in the preclinical phase of Huntington's disease (prHD). HD is a neurological genetic disorder characterized by cognitive and motor impairment, and psychiatric abnormalities. Apathy is not well characterized within the prHD. In previous literature, damage to the caudate and putamen has been correlated with increased apathy in other neurodegenerative and movement disorders. The objective of this study was to determine whether apathy severity in individuals with prHD is related to striatum volumes and cognitive control. We hypothesized that, within prHD individuals, striatum volumes and cognitive control scores would be related to apathy. METHODS: We constructed linear mixed models to analyze striatum volumes and cognitive control, a composite measure that includes tasks assessing with apathy scores from 797 prHD participants. The outcome variable for each model was apathy, and the independent variables for the four separate models were caudate volume, putamen volume, cognitive control score, and motor symptom score. We also included depression as a covariate to ensure that our results were not solely related to mood. RESULTS: Caudate and putamen volumes, as well as measures of cognitive control, were significantly related to apathy scores even after controlling for depression. CONCLUSIONS: The behavioral apathy expressed by these individuals was related to regions of the brain commonly associated with isolated apathy, and not a direct result of mood symptoms. (JINS, 2019, 25, 462-469).


Assuntos
Apatia/fisiologia , Núcleo Caudado/patologia , Função Executiva/fisiologia , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Sintomas Prodrômicos , Putamen/patologia , Adulto , Núcleo Caudado/diagnóstico por imagem , Feminino , Humanos , Doença de Huntington/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Putamen/diagnóstico por imagem
10.
Hum Brain Mapp ; 40(6): 1955-1968, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30618191

RESUMO

Dynamic functional network connectivity (dFNC) is an expansion of traditional, static FNC that measures connectivity variation among brain networks throughout scan duration. We used a large resting-state fMRI (rs-fMRI) sample from the PREDICT-HD study (N = 183 Huntington disease gene mutation carriers [HDgmc] and N = 78 healthy control [HC] participants) to examine whole-brain dFNC and its associations with CAG repeat length as well as the product of scaled CAG length and age, a variable representing disease burden. We also tested for relationships between functional connectivity and motor and cognitive measurements. Group independent component analysis was applied to rs-fMRI data to obtain whole-brain resting state networks. FNC was defined as the correlation between RSN time-courses. Dynamic FNC behavior was captured using a sliding time window approach, and FNC results from each window were assigned to four clusters representing FNC states, using a k-means clustering algorithm. HDgmc individuals spent significantly more time in State-1 (the state with the weakest FNC pattern) compared to HC. However, overall HC individuals showed more FNC dynamism than HDgmc. Significant associations between FNC states and genetic and clinical variables were also identified. In FNC State-4 (the one that most resembled static FNC), HDgmc exhibited significantly decreased connectivity between the putamen and medial prefrontal cortex compared to HC, and this was significantly associated with cognitive performance. In FNC State-1, disease burden in HDgmc participants was significantly associated with connectivity between the postcentral gyrus and posterior cingulate cortex, as well as between the inferior occipital gyrus and posterior parietal cortex.


Assuntos
Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Doença de Huntington/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos
11.
Front Neurosci ; 12: 321, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867332

RESUMO

In this paper, we present a fully-automated subcortical and ventricular shape generation pipeline that acts on structural magnetic resonance images (MRIs) of the human brain. Principally, the proposed pipeline consists of three steps: (1) automated structure segmentation using the diffeomorphic multi-atlas likelihood-fusion algorithm; (2) study-specific shape template creation based on the Delaunay triangulation; (3) deformation-based shape filtering using the large deformation diffeomorphic metric mapping for surfaces. The proposed pipeline is shown to provide high accuracy, sufficient smoothness, and accurate anatomical topology. Two datasets focused upon Huntington's disease (HD) were used for evaluating the performance of the proposed pipeline. The first of these contains a total of 16 MRI scans, each with a gold standard available, on which the proposed pipeline's outputs were observed to be highly accurate and smooth when compared with the gold standard. Visual examinations and outlier analyses on the second dataset, which contains a total of 1,445 MRI scans, revealed 100% success rates for the putamen, the thalamus, the globus pallidus, the amygdala, and the lateral ventricle in both hemispheres and rates no smaller than 97% for the bilateral hippocampus and caudate. Another independent dataset, consisting of 15 atlas images and 20 testing images, was also used to quantitatively evaluate the proposed pipeline, with high accuracy having been obtained. In short, the proposed pipeline is herein demonstrated to be effective, both quantitatively and qualitatively, using a large collection of MRI scans.

12.
Neurobiol Aging ; 69: 48-57, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29852410

RESUMO

We investigated both independent and interconnected effects of 3 lifestyle factors on brain volume, measuring yearly changes using large-scale longitudinal magnetic resonance imaging, in middle-aged to older adults. We measured brain volumes in a cohort (n = 984, 49-79 years) from the Korean Genome and Epidemiology Study group, using baseline and follow-up estimates after 4 years. In our analysis, the accelerated brain atrophy in normal aging was observed across regions (e.g., brain tissue: -0.098 ± 0.01 mL/y, p < 0.001). An independent lifestyle-specific trend of brain atrophy across time was also evident in men, where smoking (p = 0.012) and physical activity (p = 0.014) showed the strongest association with the atrophy rate. Linear regression analysis of the interconnected effect revealed that brain atrophy is mitigated by intense physical activity in smoking males. Lifestyle factors did not show any significant effect on brain volume in women. These results provide important information regarding lifestyle factors that affect brain aging in mid-to-late adulthood. Our findings may aid in the identification of preventive measures against dementia.


Assuntos
Envelhecimento , Encéfalo/anatomia & histologia , Encéfalo/patologia , Estilo de Vida , Idoso , Consumo de Bebidas Alcoólicas , Atrofia , Exercício Físico , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Fumar
13.
Front Neurol ; 9: 190, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651271

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by an expansion mutation of the cytosine-adenine-guanine (CAG) trinucleotide in the HTT gene. Decline in cognitive and motor functioning during the prodromal phase has been reported, and understanding genetic influences on prodromal disease progression beyond CAG will benefit intervention therapies. From a prodromal HD cohort (N = 715), we extracted gray matter (GM) components through independent component analysis and tested them for associations with cognitive and motor functioning that cannot be accounted for by CAG-induced disease burden (cumulative effects of CAG expansion and age). Furthermore, we examined genetic associations (at the genomic, HD pathway, and candidate region levels) with the GM components that were related to functional decline. After accounting for disease burden, GM in a component containing cuneus, lingual, and middle occipital regions was positively associated with attention and working memory performance, and the effect size was about a tenth of that of disease burden. Prodromal participants with at least one dystonia sign also had significantly lower GM volume in a bilateral inferior parietal component than participants without dystonia, after controlling for the disease burden. Two single-nucleotide polymorphisms (SNPs: rs71358386 in NCOR1 and rs71358386 in ADORA2B) in the HD pathway were significantly associated with GM volume in the cuneus component, with minor alleles being linked to reduced GM volume. Additionally, homozygous minor allele carriers of SNPs in a candidate region of ch15q13.3 had significantly higher GM volume in the inferior parietal component, and one minor allele copy was associated with a total motor score decrease of 0.14 U. Our findings depict an early genetical GM reduction in prodromal HD that occurs irrespective of disease burden and affects regions important for cognitive and motor functioning.

14.
Brain Connect ; 8(3): 166-178, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29291624

RESUMO

Huntington's disease (HD) is an inherited brain disorder characterized by progressive motor, cognitive, and behavioral dysfunctions. It is caused by abnormally large trinucleotide cytosine-adenine-guanine (CAG) repeat expansions on exon 1 of the Huntingtin gene. CAG repeat length (CAG-RL) inversely correlates with an earlier age of onset. Region-based studies have shown that HD gene mutation carrier (HDgmc) individuals (CAG-RL ≥36) present functional connectivity alterations in subcortical (SC) and default mode networks. In this analysis, we expand on previous HD studies by investigating associations between CAG-RL and connectivity in the whole brain, as well as between CAG-dependent connectivity and motor and cognitive performances. We used group-independent component analysis on resting-state functional magnetic resonance imaging scans of 261 individuals (183 HDgmc and 78 healthy controls) from the PREDICT-HD study, to obtain whole-brain resting state networks (RSNs). Regression analysis was applied within and between RSNs connectivity (functional network connectivity [FNC]) to identify CAG-RL associations. Connectivity within the putamen RSN is negatively correlated with CAG-RL. The FNC between putamen and insula decreases with increasing CAG-RL, and also shows significant associations with motor and cognitive measures. The FNC between calcarine and middle frontal gyri increased with CAG-RL. In contrast, FNC in other visual (VIS) networks declined with increasing CAG-RL. In addition to observed effects in SC areas known to be related to HD, our study identifies a strong presence of alterations in VIS regions less commonly observed in previous reports and provides a step forward in understanding FNC dysfunction in HDgmc.


Assuntos
Encéfalo/fisiopatologia , Conectoma/métodos , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiopatologia , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Feminino , Heterozigoto , Humanos , Doença de Huntington/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
15.
J Digit Imaging ; 31(3): 290-303, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29181613

RESUMO

Modern scientific endeavors increasingly require team collaborations to construct and interpret complex computational workflows. This work describes an image-analysis environment that supports the use of computational tools that facilitate reproducible research and support scientists with varying levels of software development skills. The Jupyter notebook web application is the basis of an environment that enables flexible, well-documented, and reproducible workflows via literate programming. Image-analysis software development is made accessible to scientists with varying levels of programming experience via the use of the SimpleITK toolkit, a simplified interface to the Insight Segmentation and Registration Toolkit. Additional features of the development environment include user friendly data sharing using online data repositories and a testing framework that facilitates code maintenance. SimpleITK provides a large number of examples illustrating educational and research-oriented image analysis workflows for free download from GitHub under an Apache 2.0 license: github.com/InsightSoftwareConsortium/SimpleITK-Notebooks .


Assuntos
Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Radiologia/educação , Pesquisa , Comportamento Cooperativo , Humanos , Reprodutibilidade dos Testes , Fluxo de Trabalho
16.
Neuroimage ; 170: 471-481, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28392490

RESUMO

A robust fully automated algorithm for identifying an arbitrary number of landmark points in the human brain is described and validated. The proposed method combines statistical shape models with trained brain morphometric measures to estimate midbrain landmark positions reliably and accurately. Gross morphometric constraints provided by automatically identified eye centers and the center of the head mass are shown to provide robust initialization in the presence of large rotations in the initial head orientation. Detection of primary midbrain landmarks are used as the foundation from which extended detection of an arbitrary set of secondary landmarks in different brain regions by applying a linear model estimation and principle component analysis. This estimation model sequentially uses the knowledge of each additional detected landmark as an improved foundation for improved prediction of the next landmark location. The accuracy and robustness of the presented method was evaluated by comparing the automatically generated results to two manual raters on 30 identified landmark points extracted from each of 30 T1-weighted magnetic resonance images. For the landmarks with unambiguous anatomical definitions, the average discrepancy between the algorithm results and each human observer differed by less than 1 mm from the average inter-observer variability when the algorithm was evaluated on imaging data collected from the same site as the model building data. Similar results were obtained when the same model was applied to a set of heterogeneous image volumes from seven different collection sites representing 3 scanner manufacturers. This method is reliable for general application in large-scale multi-site studies that consist of a variety of imaging data with different orientations, spacings, origins, and field strengths.


Assuntos
Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Reconhecimento Automatizado de Padrão/métodos , Adulto , Humanos , Modelos Estatísticos , Análise de Componente Principal
17.
Cancer Res ; 77(21): e101-e103, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092950

RESUMO

Diffusion MRI (dMRI) is the only noninvasive method for mapping white matter connections in the brain. We describe SlicerDMRI, a software suite that enables visualization and analysis of dMRI for neuroscientific studies and patient-specific anatomic assessment. SlicerDMRI has been successfully applied in multiple studies of the human brain in health and disease, and here, we especially focus on its cancer research applications. As an extension module of the 3D Slicer medical image computing platform, the SlicerDMRI suite enables dMRI analysis in a clinically relevant multimodal imaging workflow. Core SlicerDMRI functionality includes diffusion tensor estimation, white matter tractography with single and multi-fiber models, and dMRI quantification. SlicerDMRI supports clinical DICOM and research file formats, is open-source and cross-platform, and can be installed as an extension to 3D Slicer (www.slicer.org). More information, videos, tutorials, and sample data are available at dmri.slicer.org Cancer Res; 77(21); e101-3. ©2017 AACR.


Assuntos
Pesquisa Biomédica/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Software , Imagem de Tensor de Difusão/métodos , Humanos , Imageamento Tridimensional/métodos , Internet , Reprodutibilidade dos Testes
18.
Front Neurol ; 8: 519, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29066997

RESUMO

The selection of an appropriate segmentation tool is a challenge facing any researcher aiming to measure gray matter (GM) volume. Many tools have been compared, yet there is currently no method that can be recommended above all others; in particular, there is a lack of validation in disease cohorts. This work utilizes a clinical dataset to conduct an extensive comparison of segmentation tools. Our results confirm that all tools have advantages and disadvantages, and we present a series of considerations that may be of use when selecting a GM segmentation method, rather than a ranking of these tools. Seven segmentation tools were compared using 3 T MRI data from 20 controls, 40 premanifest Huntington's disease (HD), and 40 early HD participants. Segmented volumes underwent detailed visual quality control. Reliability and repeatability of total, cortical, and lobular GM were investigated in repeated baseline scans. The relationship between each tool was also examined. Longitudinal within-group change over 3 years was assessed via generalized least squares regression to determine sensitivity of each tool to disease effects. Visual quality control and raw volumes highlighted large variability between tools, especially in occipital and temporal regions. Most tools showed reliable performance and the volumes were generally correlated. Results for longitudinal within-group change varied between tools, especially within lobular regions. These differences highlight the need for careful selection of segmentation methods in clinical neuroimaging studies. This guide acts as a primer aimed at the novice or non-technical imaging scientist providing recommendations for the selection of cohort-appropriate GM segmentation software.

19.
Hum Brain Mapp ; 38(3): 1460-1477, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045213

RESUMO

INTRODUCTION: Huntington's disease (HD) is a genetic neurodegenerative disorder that primarily affects striatal neurons. Striatal volume loss is present years before clinical diagnosis; however, white matter degradation may also occur prior to diagnosis. Diffusion-weighted imaging (DWI) can measure microstructural changes associated with degeneration that precede macrostructural changes. DWI derived measures enhance understanding of degeneration in prodromal HD (pre-HD). METHODS: As part of the PREDICT-HD study, N = 191 pre-HD individuals and 70 healthy controls underwent two or more (baseline and 1-5 year follow-up) DWI, with n = 649 total sessions. Images were processed using cutting-edge DWI analysis methods for large multicenter studies. Diffusion tensor imaging (DTI) metrics were computed in selected tracts connecting the primary motor, primary somato-sensory, and premotor areas of the cortex with the subcortical caudate and putamen. Pre-HD participants were divided into three CAG-Age Product (CAP) score groups reflecting clinical diagnosis probability (low, medium, or high probabilities). Baseline and longitudinal group differences were examined using linear mixed models. RESULTS: Cross-sectional and longitudinal differences in DTI measures were present in all three CAP groups compared with controls. The high CAP group was most affected. CONCLUSIONS: This is the largest longitudinal DWI study of pre-HD to date. Findings showed DTI differences, consistent with white matter degeneration, were present up to a decade before predicted HD diagnosis. Our findings indicate a unique role for disrupted connectivity between the premotor area and the putamen, which may be closely tied to the onset of motor symptoms in HD. Hum Brain Mapp 38:1460-1477, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Imagem de Tensor de Difusão , Doença de Huntington/patologia , Fibras Nervosas Mielinizadas/patologia , Sintomas Prodrômicos , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Anisotropia , Estudos Transversais , Feminino , Humanos , Doença de Huntington/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Modelos Lineares , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Putamen/diagnóstico por imagem
20.
Front Neurol ; 7: 147, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708610

RESUMO

Huntington disease (HD) is caused by an abnormally expanded cytosine-adenine-guanine (CAG) trinucleotide repeat in the HTT gene. Age and CAG-expansion number are related to age at diagnosis and can be used to index disease progression. However, observed onset-age variability suggests that other factors also modulate progression. Indexing prodromal (pre-diagnosis) progression may highlight therapeutic targets by isolating the earliest-affected factors. We present the largest prodromal HD application of the univariate method voxel-based morphometry (VBM) and the first application of the multivariate method source-based morphometry (SBM) to, respectively, compare gray matter concentration (GMC) and capture co-occurring GMC patterns in control and prodromal participants. Using structural MRI data from 1050 (831 prodromal, 219 control) participants, we characterize control-prodromal, whole-brain GMC differences at various prodromal stages. Our results provide evidence for (1) regional co-occurrence and differential patterns of decline across the prodrome, with parietal and occipital differences commonly co-occurring, and frontal and temporal differences being relatively independent from one another, (2) fronto-striatal circuits being among the earliest and most consistently affected in the prodrome, (3) delayed degradation in some movement-related regions, with increasing subcortical and occipital differences with later progression, (4) an overall superior-to-inferior gradient of GMC reduction in frontal, parietal, and temporal lobes, and (5) the appropriateness of SBM for studying the prodromal HD population and its enhanced sensitivity to early prodromal and regionally concurrent differences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...