Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Nat Food ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977923

RESUMO

The Codex Alimentarius Commission (Codex) has a substantial influence over the structure and operation of food systems by setting international standards that affect the composition, structure and labelling of food. Despite the dual mandates of Codex to protect public health and ensure fair practices in food trade, food systems are increasingly unhealthy and unsustainable. An ecological reorientation of the decision-making elements that influence how Codex sets food standards-particularly mandates, governance and risk assessment-could help transform food systems towards the UN Sustainable Development Goals.

4.
Vaccines (Basel) ; 11(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243017

RESUMO

Immunization, hailed as one of the most successful public health interventions in the world, has contributed to major advancements in health as well as social and economic development [...].

5.
Global Health ; 18(1): 73, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883185

RESUMO

The emergence of SARS-CoV-2 and the subsequent COVID-19 pandemic has resulted in significant global impact. However, COVID-19 is just one of several high-impact infectious diseases that emerged from wildlife and are linked to the human relationship with nature. The rate of emergence of new zoonoses (diseases of animal origin) is increasing, driven by human-induced environmental changes that threaten biodiversity on a global scale. This increase is directly linked to environmental drivers including biodiversity loss, climate change and unsustainable resource extraction. Australia is a biodiversity hotspot and is subject to sustained and significant environmental change, increasing the risk of it being a location for pandemic origin. Moreover, the global integration of markets means that consumption trends in Australia contributes to the risk of disease spill-over in our regional neighbours in Asia-Pacific, and beyond. Despite the clear causal link between anthropogenic pressures on the environment and increasing pandemic risks, Australia's response to the COVID-19 pandemic, like most of the world, has centred largely on public health strategies, with a clear focus on reactive management. Yet, the span of expertise and evidence relevant to the governance of pandemic risk management is much wider than public health and epidemiology. It involves animal/wildlife health, biosecurity, conservation sciences, social sciences, behavioural psychology, law, policy and economic analyses to name just a few.The authors are a team of multidisciplinary practitioners and researchers who have worked together to analyse, synthesise, and harmonise the links between pandemic risk management approaches and issues in different disciplines to provide a holistic overview of current practice, and conclude the need for reform in Australia. We discuss the adoption of a comprehensive and interdisciplinary 'One Health' approach to pandemic risk management in Australia. A key goal of the One Health approach is to be proactive in countering threats of emerging infectious diseases and zoonoses through a recognition of the interdependence between human, animal, and environmental health. Developing ways to implement a One Health approach to pandemic prevention would not only reduce the risk of future pandemics emerging in or entering Australia, but also provide a model for prevention strategies around the world.


Assuntos
COVID-19 , Pandemias , Animais , Austrália/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle , Gestão de Riscos , SARS-CoV-2 , Zoonoses/epidemiologia , Zoonoses/prevenção & controle
7.
Am J Prev Med ; 62(6): 949-952, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35227543

RESUMO

INTRODUCTION: The heightened risk of COVID-19 infection and mortality in prisons is well documented, but COVID-19's impact on all-cause mortality in incarcerated populations has not yet been studied. This study analyzed mortality records from the Florida State Department of Corrections prison system population to evaluate the impact COVID-19 had on all-cause mortality and compare mortality rates and life expectancy with that of the overall state of Florida population. METHODS: Population age and sex data for Florida State Department of Corrections were ascertained from the Florida State Department of Corrections Offender Based Information System. Death data by age, sex, and cause of death were acquired from medical records and Florida State Department of Corrections offender reports. The state of Florida demographic and death data were collected from the Census Bureau, Florida Department of Health, and Centers for Disease Control and Prevention. Age- and sex-standardized life table measures were calculated, and COVID-19 contributions to changes in life expectancy were assessed using Arriaga's decomposition. RESULTS: The standardized mortality rate in the Florida State Department of Corrections population increased by 45% between 2019 and 2020, causing an overall 4.0-year decline in life expectancy. Over the same period, the state of Florida population's standardized mortality increased by 19%, resulting in an overall 2.7-year decline. Within the Florida State Department of Corrections population, life expectancy decline could be attributed exclusively to COVID-19 mortality. CONCLUSIONS: The state of Florida prison population saw a substantial increase in mortality driven solely by COVID-19 mortality, leading to an overall 4-year decline in life expectancy. Given the findings and continued threat of COVID-19 outbreaks, Florida State Department of Corrections and other prison systems should strive to increase vaccination uptake, decrease prison populations, and commit to COVID-19 data transparency.


Assuntos
COVID-19 , COVID-19/epidemiologia , Causas de Morte , Centers for Disease Control and Prevention, U.S. , Florida/epidemiologia , Humanos , Expectativa de Vida , Mortalidade , Prisões , Estados Unidos
8.
Geobiology ; 20(1): 79-97, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34337850

RESUMO

Modern carbonate tufa towers in the alkaline (~pH 9.5) Big Soda Lake (BSL), Nevada, exhibit rapid precipitation rates (exceeding 3 cm/year) and host diverse microbial communities. Geochemical indicators reveal that carbonate precipitation is, in part, promoted by the mixing of calcium-rich groundwater and carbonate-rich lake water, such that a microbial role for carbonate precipitation is unknown. Here, we characterize the BSL microbial communities and evaluate their potential effects on carbonate precipitation that may influence fast carbonate precipitation rates of the active tufa mounds of BSL. Small subunit rRNA gene surveys indicate a diverse microbial community living endolithically, in interior voids, and on tufa surfaces. Metagenomic DNA sequencing shows that genes associated with metabolisms that are capable of increasing carbonate saturation (e.g., photosynthesis, ureolysis, and bicarbonate transport) are abundant. Enzyme activity assays revealed that urease and carbonic anhydrase, two microbial enzymes that promote carbonate precipitation, are active in situ in BSL tufa biofilms, and urease also increased calcium carbonate precipitation rates in laboratory incubation analyses. We propose that, although BSL tufas form partially as a result of water mixing, tufa-inhabiting microbiota promote rapid carbonate authigenesis via ureolysis, and potentially via bicarbonate dehydration and CO2 outgassing by carbonic anhydrase. Microbially induced calcium carbonate precipitation in BSL tufas may generate signatures preserved in the carbonate microfabric, such as stromatolitic layers, which could serve as models for developing potential biosignatures on Earth and elsewhere.


Assuntos
Carbonatos , Microbiota , Biofilmes , Carbonato de Cálcio/química , Precipitação Química , Lagos
10.
J Biol Chem ; 297(2): 100982, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34293347

RESUMO

NADPH oxidase 2 (NOX2) produces the superoxide anion radical (O2-), which has functions in both cell signaling and immune defense. NOX2 is a multimeric-protein complex consisting of several protein subunits including the GTPase Rac. NOX2 uniquely facilitates an oxidative burst, which is described by initially slow O2- production, which increases over time. The NOX2 oxidative burst is considered critical to immune defense because it enables expedited O2- production in response to infections. However, the mechanism of the initiation and progression of this oxidative burst and its implications for regulation of NOX2 have not been clarified. In this study, we show that the NOX2 oxidative burst is a result of autoactivation of NOX2 coupled with the redox function of Rac. NOX2 autoactivation begins when active Rac triggers NOX2 activation and the subsequent production of O2-, which in turn activates redox-sensitive Rac. This activated Rac further activates NOX2, amplifying the feedforward cycle and resulting in a NOX2-mediated oxidative burst. Using mutagenesis-based kinetic and cell analyses, we show that enzymatic activation of Rac is exclusively responsible for production of the active Rac trigger that initiates NOX2 autoactivation, whereas redox-mediated Rac activation is the main driving force of NOX2 autoactivation and contributes to generation of ∼98% of the active NOX2 in cells. The results of this study provide insight into the regulation of NOX2 function, which could be used to develop therapeutics to control immune responses associated with dysregulated NOX2 oxidative bursts.


Assuntos
NADPH Oxidase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , NADPH Oxidase 2/imunologia , Oxirredução , Transdução de Sinais
11.
medRxiv ; 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33948600

RESUMO

BACKGROUND: The increased risk of COVID-19 infection among incarcerated individuals due to environmental hazards is well known and recent studies have highlighted the higher rates of infection and mortality prisoners in the United States face due to COVID-19. However, the impact of COVID-19 on all-cause mortality rates in incarcerated populations has not been studied. METHODS: Using data reported by the Florida Department of Corrections on prison populations and mortality events we conducted a retrospective cohort study of all individuals incarcerated in Florida state prisons between 2015 and 2020. We calculated excess deaths by estimating age-specific expected deaths from mortality trends in 2015 through 2019 and taking the difference between observed and expected deaths during the pandemic period. We calculated life table measures using standard demographic techniques and assessed significant yearly changes using bootstrapping. FINDINGS: The Florida Department of Corrections reported 510 total deaths from March 1, 2020 to December 31, 2020 among the state prison population. This was 42% higher (rate ratio 1.42, 95% CI 1.15 to 1.89) than the expected number of deaths in light of mortality rates for previous years. Reported COVID-19 deaths in a month were positively correlated with estimated excess deaths (80.4%, p <.01). Using age-specific mortality estimates, we found that life expectancy at age 20 declined by 4 years (95% CI 2.06-6.57) between 2019 and 2020 for the Florida prison population. INTERPRETATION: The Florida prison population saw a significant increase in all-cause mortality during the COVID-19 pandemic period, leading to a decrease in life expectancy of more than four years. Life years lost by the Florida prison population were likely far greater than those lost by the general United States population, as reported by other studies. This difference in years lost highlights the need for increased interventions to protect vulnerable incarcerated populations during pandemics. FUNDING: Vital Projects Fund, Arnold Ventures, US Centers for Disease Control, Eunice Kennedy Shriver National Institute of Child Health and Human Development.

12.
Geobiology ; 19(4): 376-393, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33629529

RESUMO

Mono Lake is a closed-basin, hypersaline, alkaline lake located in Eastern Sierra Nevada, California, that is dominated by microbial life. This unique ecosystem offers a natural laboratory for probing microbial community responses to environmental change. In 2017, a heavy snowpack and subsequent runoff led Mono Lake to transition from annually mixed (monomictic) to indefinitely stratified (meromictic). We followed microbial succession during this limnological shift, establishing a two-year (2017-2018) water-column time series of geochemical and microbiological data. Following meromictic conditions, anoxia persisted below the chemocline and reduced compounds such as sulfide and ammonium increased in concentration from near 0 to ~400 and ~150 µM, respectively, throughout 2018. We observed significant microbial succession, with trends varying by water depth. In the epilimnion (above the chemocline), aerobic heterotrophs were displaced by phototrophic genera when a large bloom of cyanobacteria appeared in fall 2018. Bacteria in the hypolimnion (below the chemocline) had a delayed, but systematic, response reflecting colonization by sediment "seed bank" communities. Phototrophic sulfide-oxidizing bacteria appeared first in summer 2017, followed by microbes associated with anaerobic fermentation in spring 2018, and eventually sulfate-reducing taxa by fall 2018. This slow shift indicated that multi-year meromixis was required to establish a sulfate-reducing community in Mono Lake, although sulfide oxidizers thrive throughout mixing regimes. The abundant green alga Picocystis remained the dominant primary producer during the meromixis event, abundant throughout the water column including in the hypolimnion despite the absence of light and prevalence of sulfide. Our study adds to the growing literature describing microbial resistance and resilience during lake mixing events related to climatic events and environmental change.


Assuntos
Ecossistema , Lagos , Bactérias , California , Filogenia
13.
Lancet ; 397(10272): 398-408, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516338

RESUMO

BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation.


Assuntos
Controle de Doenças Transmissíveis , Doenças Transmissíveis/mortalidade , Doenças Transmissíveis/virologia , Modelos Teóricos , Mortalidade/tendências , Anos de Vida Ajustados por Qualidade de Vida , Vacinação , Pré-Escolar , Controle de Doenças Transmissíveis/economia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Doenças Transmissíveis/economia , Análise Custo-Benefício , Países em Desenvolvimento , Feminino , Saúde Global , Humanos , Programas de Imunização , Masculino , Vacinação/economia , Vacinação/estatística & dados numéricos
14.
Int J Health Policy Manag ; 10(12): 923-933, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33327690

RESUMO

BACKGROUND: One important way to transform food systems for human and planetary health would be to reduce the production and consumption of animals for food. The over-production and over-consumption of meat and dairy products is resource-intensive, energy-dense and creates public health and food equity risks, including the creation of superbugs and antimicrobial resistance, contamination and pollution of land and waterways, and injustice to animals and humans who work in the sector. Yet the continuing and expanding use of animals is entrenched in food systems. One policy response frequently suggested by parties from all sectors (industry, government and civil society) is voluntary or mandatory labelling reforms to educate consumers about the healthiness and sustainability of food products, and thus reduce demand. This paper evaluates the pitfalls and potentials of labelling as an incremental regulatory governance stepping-stone to transformative food system change. METHODS: We use empirical data from a study of the regulatory politics of animal welfare and environmental claims on Australian products together with an ecological regulation conceptual approach to critically evaluate the potential of labelling as a regulatory mechanism. RESULTS: We show that labelling is generally ineffective as a pathway to transformative food system change for three reasons: it does not do enough to redistribute power away from dominant actors to those harmed by the food system; it is vulnerable to greenwashing and reductionism; and it leads to market segmentation rather than collective political action. CONCLUSION: We suggest the need for regulatory governance that is ecological by design. Labelling can only be effective when connected to a broader suite of measures to reduce overall production and consumption of meat. We conclude with some recommendations as to how public health advocates and policy entrepreneurs might strategically use and contest labelling and certification schemes to build support for transformative food system change and to avoid the regressive consequences of labelling.


Assuntos
Carne , Saúde Pública , Animais , Austrália , Humanos , Política
16.
J Biol Chem ; 295(39): 13651-13663, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32753483

RESUMO

Ras family proteins play an essential role in several cellular functions, including growth, differentiation, and survival. The mechanism of action of Ras mutants in Costello syndrome and cancers has been identified, but the contribution of Ras mutants to Noonan syndrome, a genetic disorder that prevents normal development in various parts of the body, is unknown. Son of Sevenless (SOS) is a Ras guanine nucleotide exchange factor. In response to Ras-activating cell signaling, SOS autoinhibition is released and is followed by accelerative allosteric feedback autoactivation. Here, using mutagenesis-based kinetic and pulldown analyses, we show that Noonan syndrome Ras mutants I24N, T50I, V152G, and D153V deregulate the autoactivation of SOS to populate their active form. This previously unknown process has been linked so far only to the development of Noonan syndrome. In contrast, other Noonan syndrome Ras mutants-V14I, T58I, and G60E-populate their active form by deregulation of the previously documented Ras GTPase activities. We propose a novel mechanism responsible for the deregulation of SOS autoactivation, where I24N, T50I, V152G, and D153V Ras mutants evade SOS autoinhibition. Consequently, they are capable of forming a complex with the SOS allosteric site, thus aberrantly promoting SOS autoactivation, resulting in the population of active Ras mutants in cells. The results of this study elucidate the molecular mechanism of the Ras mutant-mediated development of Noonan syndrome.


Assuntos
Síndrome de Noonan/metabolismo , Proteínas Son Of Sevenless/metabolismo , Sítio Alostérico , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Mutação , Síndrome de Noonan/genética , Proteínas Son Of Sevenless/química
17.
Clin Infect Dis ; 71(Suppl 2): S160-S164, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32725236

RESUMO

Nine years elapsed between Gavi's investment decision to support typhoid conjugate vaccines (TCVs) in 2008 and Gavi support becoming available for countries to introduce TCV. The protracted path toward Gavi support for TCV highlights the challenges of vaccine development for lower-income countries and the importance of Gavi engagement as early as possible in product development processes to support the alignment of manufacturing, global policy, and program implementation. Early engagement would provide inputs to inform strategic vaccine investment decisions that transition more efficiently toward country implementation. Several countries have been approved for Gavi support to introduce TCV in 2019-2020. The paucity of generalizable typhoid epidemiological data in early introducing countries has reinforced the need for continued evidence generation regarding typhoid epidemiology and TCV impact. This has led to the development of guidance and tools to support country decision making for TCV introduction based on enhanced understanding of local typhoid burden and risk.


Assuntos
Febre Tifoide , Vacinas Tíficas-Paratíficas , Vacinas , Humanos , Programas de Imunização , Febre Tifoide/epidemiologia , Febre Tifoide/prevenção & controle , Vacinas Conjugadas
18.
ISME J ; 14(10): 2527-2541, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32661357

RESUMO

Our current knowledge of host-virus interactions in biofilms is limited to computational predictions based on laboratory experiments with a small number of cultured bacteria. However, natural biofilms are diverse and chiefly composed of uncultured bacteria and archaea with no viral infection patterns and lifestyle predictions described to date. Herein, we predict the first DNA sequence-based host-virus interactions in a natural biofilm. Using single-cell genomics and metagenomics applied to a hot spring mat of the Cone Pool in Mono County, California, we provide insights into virus-host range, lifestyle and distribution across different mat layers. Thirty-four out of 130 single cells contained at least one viral contig (26%), which, together with the metagenome-assembled genomes, resulted in detection of 59 viruses linked to 34 host species. Analysis of single-cell amplification kinetics revealed a lack of active viral replication on the single-cell level. These findings were further supported by mapping metagenomic reads from different mat layers to the obtained host-virus pairs, which indicated a low copy number of viral genomes compared to their hosts. Lastly, the metagenomic data revealed high layer specificity of viruses, suggesting limited diffusion to other mat layers. Taken together, these observations indicate that in low mobility environments with high microbial abundance, lysogeny is the predominant viral lifestyle, in line with the previously proposed "Piggyback-the-Winner" theory.


Assuntos
Fontes Termais , Vírus , Archaea/genética , Genoma Viral , Metagenoma , Metagenômica , Filogenia , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...