Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(5): 754-769, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38084898

RESUMO

The therapeutic effectiveness of anticancer drugs, including nanomedicines, can be enhanced with active receptor-targeting strategies. Epidermal growth factor receptor (EGFR) is an important cancer biomarker, constitutively expressed in sarcoma patients of different histological types. The present work reports materials and in vitro biomedical analyses of silanized (passive delivery) and/or EGF-functionalized (active delivery) ceria nanorods exhibiting highly defective catalytically active surfaces. The EGFR-targeting efficiency of nanoceria was confirmed by receptor-binding studies. Increased cytotoxicity and reactive oxygen species (ROS) production were observed for EGF-functionalized nanoceria owing to enhanced cellular uptake by HT-1080 fibrosarcoma cells. The uptake was confirmed by TEM and confocal microscopy. Silanized nanoceria demonstrated negligible/minimal cytotoxicity toward healthy MRC-5 cells at 24 and 48 h, whereas this was significant at 72 h owing to a nanoceria accumulation effect. In contrast, considerable cytotoxicity toward the cancer cells was exhibited at all three times points. The ROS generation and associated cytotoxicity were moderated by the equilibrium between catalysis by ceria, generation of cell debris, and blockage of active sites. EGFR-targeting is shown to enhance the uptake levels of nanoceria by cancer cells, subsequently enhancing the overall anticancer activity and therapeutic performance of ceria.


Assuntos
Cério , Nanopartículas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Epidérmico , Nanopartículas/química , Receptores ErbB , Cério/farmacologia , Cério/química
2.
Mater Sci Eng C Mater Biol Appl ; 120: 111663, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545829

RESUMO

The application of nanoparticulate therapies for cancer depends largely on the uptake and redox activity of the particles. The present work reports the fabrication of different morphologies of nanoceria (CeO2-x) as nanooctahedra (NO), nanorods (NR), and nanocubes (NC) by hydrothermal synthesis at different temperatures (100 °C, 180 °C) of solutions of 0.05 M Ce(NO3)3·6H2O and different concentrations of NaOH (0.01 M, 6.00 M). The characteristics of these nanomorphologies are compared in terms of the crystallinity (XRD), grain size (TEM), surface area (BET), tendency to agglomerate, and the oxygen vacancy concentration ([VO••]) as reflected by the [Ce3+]/[Ce4+] ratio (XPS). The effects of these parameters on the potential cellular uptake are canvassed, suggesting that the nonpolarity of the {111} planes of NO and NR facilitate the preferential uptake of these nanomorphologies. These experimental variables then were normalized through the use of NC as a model substrate for the functionalization using gum arabic (GA) and collagen in order to assess their roles in enhancing redox activity. Both the unfunctionalized and functionalized NC were noncytotoxic in in vitro tests with Kuramochi ovarian cancer cells. However, the antioxidant behavior of the collagen-functionalized NC was superior to that of the unfunctionalized NC, which was superior to that of the controls. These results demonstrate that, while the intrinsic VO•• of CeO2-x enhance the destruction of reactive oxygen species (ROS), functionalization by gum arabic and collagen crosslinking as extrinsic additions to the system enhances ROS destruction to an even greater extent. The antioxidant behavior and potential to neutralize superoxide and hydroxyl radicals of these materials offers new potential for the improvement of nanoparticulate cancer therapies.


Assuntos
Cério , Nanopartículas , Neoplasias , Colágeno , Neoplasias/tratamento farmacológico , Oxirredução
3.
Anal Biochem ; 519: 42-50, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27965063

RESUMO

A method for immobilization of functional proteins by chemical cross-linking of the protein of interest and uncoated iron oxide nanoparticles in the presence of Epichlorohydrin is described. As a result of the cross-linking, the proteins form a matrix in which the particles get entrapped. The optimum concentration of Epichlorohydrin that facilitates immobilization of protein without affecting the functional properties of the protein was determined. This method was used to immobilize several functional proteins and the development and functional activity of Protein A-magnetic nanoparticles (MNPs) is described here in detail. The Protein A-MNPs possess high binding capacity due to the increased surface area of uncoated nanoparticles and robust magnetic separation due to the absence of polymeric coating materials. Protein A-MNPs were successfully used for purification of antibodies and also for immunoprecipitation. We also immobilized enzymes such as horse radish peroxidase and esterase and found that by providing the optimum incubation time, temperature and protein to nanoparticle ratio, we can retain the activity and improve the stability of the enzyme. This study is the first demonstration that Epichlorohydrin can be used to entrap nanoparticles in a cross-linked matrix of protein without impairing the activity of immobilized protein.


Assuntos
Reagentes de Ligações Cruzadas/química , Enzimas Imobilizadas/química , Epicloroidrina/química , Esterases/química , Peroxidase do Rábano Silvestre/química , Nanopartículas de Magnetita/química , Enzimas Imobilizadas/metabolismo , Epicloroidrina/metabolismo , Esterases/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Imunoensaio , Cinética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...