Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 24(3): e13930, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247258

RESUMO

Population genetic simulation has emerged as a common tool for investigating increasingly complex evolutionary and demographic models. Software capable of handling high-level model complexity has recently been developed, and the advancement of tree sequence recording now allows simulations to merge the efficiency and genealogical insight of coalescent simulations with the flexibility of forward simulations. However, frameworks utilizing these features have not yet been compared and benchmarked. Here, we evaluate various simulation workflows using the coalescent simulator msprime and the forward simulator SLiM, to assess resource efficiency and determine an optimal simulation framework. Three aspects were evaluated: (1) the burn-in, to establish an equilibrium level of neutral diversity in the population; (2) the forward simulation, in which temporally fluctuating selection is acting; and (3) the final computation of summary statistics. We provide typical memory and computation time requirements for each step. We find that the fastest framework, a combination of coalescent and forward simulation with tree sequence recording, increases simulation speed by over twenty times compared to classical forward simulations without tree sequence recording, although it does require six times more memory. Overall, using efficient simulation workflows can lead to a substantial improvement when modelling complex evolutionary scenarios-although the optimal framework ultimately depends on the available computational resources.


Assuntos
Benchmarking , Genética Populacional , Simulação por Computador , Software , Seleção Genética , Modelos Genéticos
2.
Trends Genet ; 39(6): 491-504, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36890036

RESUMO

Recent studies of cosmopolitan Drosophila populations have found hundreds to thousands of genetic loci with seasonally fluctuating allele frequencies, bringing temporally fluctuating selection to the forefront of the historical debate surrounding the maintenance of genetic variation in natural populations. Numerous mechanisms have been explored in this longstanding area of research, but these exciting empirical findings have prompted several recent theoretical and experimental studies that seek to better understand the drivers, dynamics, and genome-wide influence of fluctuating selection. In this review, we evaluate the latest evidence for multilocus fluctuating selection in Drosophila and other taxa, highlighting the role of potential genetic and ecological mechanisms in maintaining these loci and their impacts on neutral genetic variation.


Assuntos
Variação Genética , Animais , Drosophila melanogaster/genética , Humanos , Estações do Ano , Adaptação Fisiológica , Seleção Genética , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...