Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 4(2): 188-97, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26078871

RESUMO

MtrR is a well-characterized repressor of the Neisseria gonorrhoeae mtrCDE efflux pump operon. However, results from a previous transcriptional profiling study suggested that MtrR also represses or activates expression of at least sixty genes outside of the mtr locus. Evidence that MtrR can directly repress so-called "off target" genes has previously been reported; in particular, MtrR was shown to directly repress glnA, which encodes glutamine synthetase. In contrast, evidence for the ability of MtrR to directly activate expression of gonococcal genes has been lacking; herein, we provide such evidence. We now report that MtrR has the ability to directly activate expression of glnE, which encodes the dual functional adenyltransferase/deadenylase enzyme GlnE that modifies GlnA resulting in regulation of its role in glutamine biosynthesis. With its capacity to repress expression of glnA, the results presented herein emphasize the diverse and often opposing regulatory properties of MtrR that likely contributes to the overall physiology and metabolism of N. gonorrhoeae.

2.
PLoS Pathog ; 9(4): e1003300, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593006

RESUMO

There are both pharmacodynamic and evolutionary reasons to use multiple rather than single antibiotics to treat bacterial infections; in combination antibiotics can be more effective in killing target bacteria as well as in preventing the emergence of resistance. Nevertheless, with few exceptions like tuberculosis, combination therapy is rarely used for bacterial infections. One reason for this is a relative dearth of the pharmaco-, population- and evolutionary dynamic information needed for the rational design of multi-drug treatment protocols. Here, we use in vitro pharmacodynamic experiments, mathematical models and computer simulations to explore the relative efficacies of different two-drug regimens in clearing bacterial infections and the conditions under which multi-drug therapy will prevent the ascent of resistance. We estimate the parameters and explore the fit of Hill functions to compare the pharmacodynamics of antibiotics of four different classes individually and in pairs during cidal experiments with pathogenic strains of Staphylococcus aureus and Escherichia coli. We also consider the relative efficacy of these antibiotics and antibiotic pairs in reducing the level of phenotypically resistant but genetically susceptible, persister, subpopulations. Our results provide compelling support for the proposition that the nature and form of the interactions between drugs of different classes, synergy, antagonism, suppression and additivity, has to be determined empirically and cannot be inferred from what is known about the pharmacodynamics or mode of action of these drugs individually. Monte Carlo simulations of within-host treatment incorporating these pharmacodynamic results and clinically relevant refuge subpopulations of bacteria indicate that: (i) the form of drug-drug interactions can profoundly affect the rate at which infections are cleared, (ii) two-drug therapy can prevent treatment failure even when bacteria resistant to single drugs are present at the onset of therapy, and (iii) this evolutionary virtue of two-drug therapy is manifest even when the antibiotics suppress each other's activity.


Assuntos
Antibacterianos/farmacologia , Simulação por Computador , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/uso terapêutico , Combinação de Medicamentos , Interações Medicamentosas , Farmacorresistência Bacteriana , Quimioterapia Combinada , Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade Microbiana , Método de Monte Carlo , Infecções Estafilocócicas/microbiologia
3.
PLoS Genet ; 9(1): e1003123, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23300474

RESUMO

When growing populations of bacteria are confronted with bactericidal antibiotics, the vast majority of cells are killed, but subpopulations of genetically susceptible but phenotypically resistant bacteria survive. In accord with the prevailing view, these "persisters" are non- or slowly dividing cells randomly generated from the dominant population. Antibiotics enrich populations for pre-existing persisters but play no role in their generation. The results of recent studies with Escherichia coli suggest that at least one antibiotic, ciprofloxacin, can contribute to the generation of persisters. To more generally elucidate the role of antibiotics in the generation of and selection for persisters and the nature of persistence in general, we use mathematical models and experiments with Staphylococcus aureus (Newman) and the antibiotics ciprofloxacin, gentamicin, vancomycin, and oxacillin. Our results indicate that the level of persistence varies among these drugs and their concentrations, and there is considerable variation in this level among independent cultures and mixtures of independent cultures. A model that assumes that the rate of production of persisters is low and persisters grow slowly in the presence of antibiotics can account for these observations. As predicted by this model, pre-treatment with sub-MIC concentrations of antibiotics substantially increases the level of persistence to drugs other than those with which the population is pre-treated. Collectively, the results of this jointly theoretical and experimental study along with other observations support the hypothesis that persistence is the product of many different kinds of errors in cell replication that result in transient periods of non-replication and/or slowed metabolism by individual cells in growing populations. This Persistence as Stuff Happens (PaSH) hypothesis can account for the ubiquity of this phenomenon. Like mutation, persistence is inevitable rather than an evolved character. What evolved and have been identified are genes and processes that affect the frequency of persisters.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana/genética , Dinâmica Populacional , Seleção Genética , Staphylococcus aureus , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Evolução Biológica , Humanos , Modelos Teóricos , Mutação , Infecções Estafilocócicas/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade
4.
Antimicrob Agents Chemother ; 56(3): 1491-501, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22214775

RESUMO

Previous studies have shown that the MpeR transcriptional regulator produced by Neisseria gonorrhoeae represses the expression of mtrF, which encodes a putative inner membrane protein (MtrF). MtrF works as an accessory protein with the Mtr efflux pump, helping gonococci to resist high levels of diverse hydrophobic antimicrobials. Regulation of mpeR has been reported to occur by an iron-dependent mechanism involving Fur (ferric uptake regulator). Collectively, these observations suggest the presence of an interconnected regulatory system in gonococci that modulates the expression of efflux pump protein-encoding genes in an iron-responsive manner. Herein, we describe this connection and report that levels of gonococcal resistance to a substrate of the mtrCDE-encoded efflux pump can be modulated by MpeR and the availability of free iron. Using microarray analysis, we found that the mtrR gene, which encodes a direct repressor (MtrR) of mtrCDE, is an MpeR-repressed determinant in the late logarithmic phase of growth when free iron levels would be reduced due to bacterial consumption. This repression was enhanced under conditions of iron limitation and resulted in increased expression of the mtrCDE efflux pump operon. Furthermore, as judged by DNA-binding analysis, MpeR-mediated repression of mtrR was direct. Collectively, our results indicate that both genetic and physiologic parameters (e.g., iron availability) can influence the expression of the mtr efflux system and modulate levels of gonococcal susceptibility to efflux pump substrates.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Reguladoras de Ferro/genética , Ferro/metabolismo , Neisseria gonorrhoeae/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Loci Gênicos , Humanos , Proteínas Reguladoras de Ferro/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neisseria gonorrhoeae/efeitos dos fármacos , Óperon , Plasmídeos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
5.
mBio ; 2(5)2011.
Artigo em Inglês | MEDLINE | ID: mdl-21933917

RESUMO

UNLABELLED: The MtrC-MtrD-MtrE multidrug efflux pump of Neisseria gonorrhoeae confers resistance to a diverse array of antimicrobial agents by transporting these toxic compounds out of the gonococcus. Frequently in gonococcal strains, the expression of the mtrCDE operon is differentially regulated by both a repressor, MtrR, and an activator, MtrA. The mtrR gene lies 250 bp upstream of and is transcribed divergently from the mtrCDE operon. Previous research has shown that mutations in the mtrR coding region and in the mtrR-mtrCDE intergenic region increase levels of gonococcal antibiotic resistance and in vivo fitness. Recently, a C-to-T transition mutation 120 bp upstream of the mtrC start codon, termed mtr120, was identified in strain MS11 and shown to be sufficient to confer high levels of antimicrobial resistance when introduced into strain FA19. Here we report that this mutation results in a consensus -10 element and that its presence generates a novel promoter for mtrCDE transcription. This newly generated promoter was found to be stronger than the wild-type promoter and does not appear to be subject to MtrR repression or MtrA activation. Although rare, the mtr120 mutation was identified in an additional clinical isolate during sequence analysis of antibiotic-resistant strains cultured from patients with gonococcal infections. We propose that cis-acting mutations can develop in gonococci that significantly alter the regulation of the mtrCDE operon and result in increased resistance to antimicrobials. IMPORTANCE: Gonorrhea is the second most prevalent sexually transmitted bacterial infection and a worldwide public health concern. As there is currently no vaccine against Neisseria gonorrhoeae, appropriate diagnostics and subsequent antibiotic therapy remain the primary means of infection control. However, the effectiveness of antibiotic treatment is constantly challenged by the emergence of resistant strains, mandating a thorough understanding of resistance mechanisms to aid in the development of new antimicrobial therapies and genetic methods for antimicrobial resistance testing. This study was undertaken to characterize a novel mechanism of antibiotic resistance regulation in N. gonorrhoeae. Here we show that a single base pair mutation generates a second, stronger promoter for mtrCDE transcription that acts independently of the known efflux system regulators and results in high-level antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/genética , Mutação Puntual , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Gonorreia/microbiologia , Humanos , Neisseria gonorrhoeae/metabolismo , Óperon , Regiões Promotoras Genéticas
6.
Antimicrob Agents Chemother ; 55(6): 2559-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21422217

RESUMO

DNA-binding proteins that control expression of drug efflux pump genes have been termed "local regulators" as their encoding gene is often located adjacent to the gene(s) that they regulate. However, results from recent studies indicate that they can control genes outside efflux pump-encoding loci, which we term as being "off target." For example, the MtrR repressor was initially recognized for its ability to repress transcription of the mtrCDE-encoded efflux pump operon in the strict human pathogen Neisseria gonorrhoeae, but recent results from genetic and microarray studies have shown that it can control expression of nearly 70 genes scattered throughout the chromosome. One of the off-target MtrR-repressed genes is glnA, which encodes glutamine synthetase. Herein, we confirm the capacity of MtrR to repress glnA expression and provide evidence that such repression is due to its ability to negatively influence the binding of a second DNA-binding protein (FarR), which activates glnA. FarR was previously recognized as a transcriptional repressor of the farAB-encoded efflux pump operon. Thus, two DNA-binding proteins previously characterized as repressors of genes encoding efflux pumps that contribute to gonococcal resistance to antimicrobials can act in an opposing manner to modulate expression of a gene involved in basic metabolism.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/fisiologia , Regulação Bacteriana da Expressão Gênica , Glutamato-Amônia Ligase/genética , Neisseria gonorrhoeae/genética , Proteínas Repressoras/fisiologia , Proteínas de Bactérias/fisiologia , Sequência de Bases , Farmacorresistência Bacteriana , Dados de Sequência Molecular , Neisseria gonorrhoeae/efeitos dos fármacos , Transcrição Gênica
7.
J Bacteriol ; 191(1): 287-97, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18978065

RESUMO

The MtrR transcriptional-regulatory protein is known to repress transcription of the mtrCDE operon, which encodes a multidrug efflux pump possessed by Neisseria gonorrhoeae that is important in the ability of gonococci to resist certain hydrophobic antibiotics, detergents, dyes, and host-derived antimicrobials. In order to determine whether MtrR can exert regulatory action on other gonococcal genes, we performed a whole-genome microarray analysis using total RNA extracted from actively growing broth cultures of isogenic MtrR-positive and MtrR-negative gonococci. We determined that, at a minimum, 69 genes are directly or indirectly subject to MtrR control, with 47 being MtrR repressed and 22 being MtrR activated. rpoH, which encodes the general stress response sigma factor RpoH (sigma 32), was found by DNA-binding studies to be directly repressed by MtrR, as it was found to bind to a DNA sequence upstream of rpoH that included sites within the rpoH promoter. MtrR also repressed the expression of certain RpoH-regulated genes, but this regulation was likely indirect and a reflection of MtrR control of rpoH expression. Inducible expression of MtrR was found to repress rpoH expression and to increase gonococcal susceptibility to hydrogen peroxide (H(2)O(2)) and an antibiotic (erythromycin) recognized by the MtrC-MtrD-MtrE efflux pump system. We propose that, apart from its ability to control the expression of the mtrCDE-encoded efflux pump operon and, as a consequence, levels of gonococcal resistance to host antimicrobials (e.g., antimicrobial peptides) recognized by the efflux pump, the ability of MtrR to regulate the expression levels of rpoH and RpoH-regulated genes also modulates levels of gonococcal susceptibility to H(2)O(2).


Assuntos
Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Proteínas de Choque Térmico/genética , Neisseria gonorrhoeae/genética , Proteínas Repressoras/genética , Fator sigma/genética , Proteínas de Bactérias/metabolismo , Mapeamento Cromossômico , Cromossomos Bacterianos/genética , Primers do DNA , DNA Bacteriano/genética , DNA Complementar/genética , Desoxirribonuclease I , Regulação Bacteriana da Expressão Gênica , Genótipo , Humanos , Peróxido de Hidrogênio/farmacologia , Hibridização de Ácido Nucleico , Óperon , Reação em Cadeia da Polimerase , Proteínas Repressoras/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...