Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 81(8): 1749-1765.e8, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33657400

RESUMO

Acetylation of lysine 16 on histone H4 (H4K16ac) is catalyzed by histone acetyltransferase KAT8 and can prevent chromatin compaction in vitro. Although extensively studied in Drosophila, the functions of H4K16ac and two KAT8-containing protein complexes (NSL and MSL) are not well understood in mammals. Here, we demonstrate a surprising complex-dependent activity of KAT8: it catalyzes H4K5ac and H4K8ac as part of the NSL complex, whereas it catalyzes the bulk of H4K16ac as part of the MSL complex. Furthermore, we show that MSL complex proteins and H4K16ac are not required for cell proliferation and chromatin accessibility, whereas the NSL complex is essential for cell survival, as it stimulates transcription initiation at the promoters of housekeeping genes. In summary, we show that KAT8 switches catalytic activity and function depending on its associated proteins and that, when in the NSL complex, it catalyzes H4K5ac and H4K8ac required for the expression of essential genes.


Assuntos
Histona Acetiltransferases/genética , Homeostase/genética , Transcrição Gênica/genética , Acetilação , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Proliferação de Células/genética , Cromatina/genética , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Células K562 , Lisina/genética , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Células THP-1
2.
Shock ; 56(3): 433-439, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534396

RESUMO

BACKGROUND: Damage-associated molecular patterns (DAMPs) stimulate endothelial syndecan-1 shedding and neutrophil extracellular traps (NET) formation. The role of NETs in trauma and trauma-induced hypercoagulability is unknown. We hypothesized that trauma patients with accelerated thrombin generation would have increased NETosis and syndecan-1 levels. METHODS: In this pilot study, we analyzed 50 citrated plasma samples from 30 trauma patients at 0 h (n = 22) and 6 h (n = 28) from time of injury (TOI) and 21 samples from healthy volunteers, for a total of 71 samples included in analysis. Thrombin generation was quantified using calibrated automated thrombogram (CAT) and reported as lag time (LT), peak height (PH), and time to peak (ttPeak). Nucleosome calibrated (H3NUC) and free histone standardized (H3Free) ELISAs were used to quantify NETs. Syndecan-1 levels were quantified by ELISA. Results are presented as median [interquartile range] and Spearman rank correlations. RESULTS: Plasma levels of H3NUC were increased in trauma patients as compared with healthy volunteers both at 0 h (89.8 ng/mL [35.4, 180.3]; 18.1 ng/mL [7.8, 37.4], P = 0.002) and at 6 h (86.5 ng/mL [19.2, 612.6]; 18.1 ng/mL [7.8, 37.4], P = 0.003) from TOI. H3Free levels were increased in trauma patients at 0 h (5.74 ng/mL [3.19, 8.76]; 1.61 ng/mL [0.66, 3.50], P = 0.002) and 6 h (5.52 ng/mL [1.46, 11.37]; 1.61 ng/mL [0.66, 3.50], P = 0.006). Syndecan-1 levels were greater in trauma patients (4.53 ng/mL [3.28, 6.28]; 2.40 ng/mL [1.66, 3.20], P < 0.001) only at 6 h from TOI. H3Free and syndecan-1 levels positively correlated both at 0 h (0.376, P = 0.013) and 6 h (0.583, P < 0.001) from TOI. H3NUC levels and syndecan-1 levels were positively correlated at 6 h from TOI (0.293, P = 0.041). TtPeak correlated inversely to H3 NUC (-0.358, P = 0.012) and syndecan-1 levels (-0.298, P = 0.038) at 6 h from TOI. CONCLUSIONS: Our pilot study demonstrates that trauma patients have increased NETosis, measured by H3NUC and H3Free levels, increased syndecan-1 shedding, and accelerated thrombin generation kinetics early after injury.


Assuntos
Armadilhas Extracelulares/fisiologia , Sindecana-1/sangue , Trombina/metabolismo , Ferimentos e Lesões/sangue , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Escala de Gravidade do Ferimento , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Fatores de Tempo , Ferimentos e Lesões/complicações
3.
Methods Mol Biol ; 2261: 323-343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33420999

RESUMO

Chromatin immunoprecipitation (ChIP) is a method used to examine the genomic localization of a target of interest (e.g., proteins, protein posttranslational modifications, or DNA elements). As ChIP provides a snapshot of in vivo DNA-protein interactions, it lends insight to the mechanisms of gene expression and genome regulation. This chapter provides a detailed protocol focused on native-ChIP (N-ChIP), a robust approach to profile stable DNA-protein interactions. We also describe best practices for ChIP , including defined controls to ensure specific and efficient target enrichment and methods for data normalization.


Assuntos
Imunoprecipitação da Cromatina , Cromatina/metabolismo , DNA/metabolismo , Histonas/metabolismo , Animais , Células Cultivadas , Cromatina/genética , DNA/genética , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Fluxo de Trabalho
4.
Addict Biol ; 26(1): e12816, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31373129

RESUMO

Epigenetic enzymes oversee long-term changes in gene expression by integrating genetic and environmental cues. While there are hundreds of enzymes that control histone and DNA modifications, their potential roles in substance abuse and alcohol dependence remain underexplored. A few recent studies have suggested that epigenetic processes could underlie transcriptomic and behavioral hallmarks of alcohol addiction. In the present study, we sought to identify epigenetic enzymes in the brain that are dysregulated during protracted abstinence as a consequence of chronic and intermittent alcohol exposure. Through quantitative mRNA expression analysis of over 100 epigenetic enzymes, we identified 11 that are significantly altered in alcohol-dependent rats compared with controls. Follow-up studies of one of these enzymes, the histone demethylase KDM6B, showed that this enzyme exhibits region-specific dysregulation in the prefrontal cortex and nucleus accumbens of alcohol-dependent rats. KDM6B was also upregulated in the human alcoholic brain. Upregulation of KDM6B protein in alcohol-dependent rats was accompanied by a decrease of trimethylation levels at histone H3, lysine 27 (H3K27me3), consistent with the known demethylase specificity of KDM6B. Subsequent epigenetic (chromatin immunoprecipitation [ChIP]-sequencing) analysis showed that alcohol-induced changes in H3K27me3 were significantly enriched at genes in the IL-6 signaling pathway, consistent with the well-characterized role of KDM6B in modulation of inflammatory responses. Knockdown of KDM6B in cultured microglial cells diminished IL-6 induction in response to an inflammatory stimulus. Our findings implicate a novel KDM6B-mediated epigenetic signaling pathway integrated with inflammatory signaling pathways that are known to underlie the development of alcohol addiction.


Assuntos
Alcoolismo/genética , Histona Desmetilases com o Domínio Jumonji/genética , Animais , Células Cultivadas , Epigênese Genética , Etanol/metabolismo , Histona Desmetilases/genética , Histonas/metabolismo , Humanos , Córtex Pré-Frontal/metabolismo , Ratos , Transdução de Sinais , Regulação para Cima
5.
Thromb Update ; 5: 100090, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38620680

RESUMO

Background: COVID-19-associated coagulopathy is incompletely understood. Objectives: To characterize thrombin generation, Von Willebrand Factor (VWF), neutrophil extracellular traps (NETs), and their role in COVID-19 risk stratification in the emergency department (ED). Patients/methods: Plasma samples from 67 ED COVID-19 patients were compared to 38 healthy volunteers (HVs). Thrombin generation (calibrated automated thrombogram, CAT) was expressed as lag time (LT, min), peak height (PH, min), and time to peak (ttPeak, min). Citrullinated nucleosomes and histones were quantified with ELISA, VWF antigen and activity (IU/dL) through latex immunoassay, Factor VIII (IU/dL) through one-stage optical clot detection, and VWF multimers with Western blot densitometry. Wilcoxon testing and multivariable logistic regression were performed. Results presented as median [Q1, Q3]; p < 0.05 significant. Results: COVID-19 patients had longer LT (4.00 [3.26, 4.67]; 2.95 [2.67, 3.10], p < 0.001) and ttPeak (7.33 [6.33, 8.04]; 6.45 [6.00, 7.50], p = 0.004), greater VWF antigen (212 [158, 275]; 110 [91, 128], p < 0.001) and Factor VIII levels (148 [106, 190]; 106 [86, 129], p < 0.001), with decreased high molecular weight multimers (Normalized multimer ratio 0.807 [0.759, 0.869]; 0.891 [0.858, 0.966], p < 0.001), than HVs. COVID-19 patients requiring admission from the ED had longer LT and ttPeak with greater VWF antigen and Factor VIII levels than those not admitted. Two and three variable models of CAT parameters and VWF correlated with COVID-19 and admission status (C-statistics 0.677 to 0.922). Conclusions: Thrombin generation kinetics and VWF levels, independent of NETs, may have a role in predicting admission need for COVID-19 patients.

6.
J Thromb Haemost ; 18(10): 2732-2743, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32654410

RESUMO

BACKGROUND: Recent data propose a diagnostic and prognostic capacity for citrullinated histone H3 (H3Cit), a marker of neutrophil extracellular traps (NETs), in pathologic conditions such as cancer and thrombosis. However, current research is hampered by lack of standardized assays. OBJECTIVES: We aimed to develop an assay to reliably quantify nucleosomal H3Cit in human plasma. METHODS: We assessed the common practice of in vitro enzymatically modified histone H3 as calibration standards and the specificity of available intrapeptidyl citrulline antibodies. Based on our findings, we developed and validated a novel assay to quantify nucleosomal H3Cit in human plasma. RESULTS: We show that enzymatically citrullinated H3 proteins are compromised by high enzyme-dependent lot variability as well as instability in plasma. We furthermore demonstrate that the majority of commercially available antibodies against intrapeptidyl citrulline display poor specificity for their reported target when tested against a panel of semi-synthetic nucleosomes containing distinct histone H3 citrullinations. Finally, we present a novel assay utilizing highly specific monoclonal antibodies and semi-synthetic nucleosomes containing citrulline in place of arginine at histone H3, arginine residues 2, 8, and 17 (H3R2,8,17Cit) as calibration standards. Rigorous validation of this assay shows its capacity to accurately and reliably quantify nucleosomal H3Cit levels in human plasma with clear elevations in cancer patients compared to healthy individuals. CONCLUSIONS: Our novel approach using defined nucleosome controls enables reliable quantification of H3Cit in human plasma. This assay will be broadly applicable to study the role of histone citrullination in disease and its utility as a biomarker.


Assuntos
Armadilhas Extracelulares , Histonas , Bioensaio , Humanos , Nucleossomos , Plasma , Processamento de Proteína Pós-Traducional
7.
Mol Cell ; 72(1): 162-177.e7, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244833

RESUMO

Histone post-translational modifications (PTMs) are important genomic regulators often studied by chromatin immunoprecipitation (ChIP), whereby their locations and relative abundance are inferred by antibody capture of nucleosomes and associated DNA. However, the specificity of antibodies within these experiments has not been systematically studied. Here, we use histone peptide arrays and internally calibrated ChIP (ICeChIP) to characterize 52 commercial antibodies purported to distinguish the H3K4 methylforms (me1, me2, and me3, with each ascribed distinct biological functions). We find that many widely used antibodies poorly distinguish the methylforms and that high- and low-specificity reagents can yield dramatically different biological interpretations, resulting in substantial divergence from the literature for numerous H3K4 methylform paradigms. Using ICeChIP, we also discern quantitative relationships between enhancer H3K4 methylation and promoter transcriptional output and can measure global PTM abundance changes. Our results illustrate how poor antibody specificity contributes to the "reproducibility crisis," demonstrating the need for rigorous, platform-appropriate validation.


Assuntos
Anticorpos/genética , Imunoprecipitação da Cromatina/métodos , Heterocromatina/genética , Histonas/genética , Anticorpos/química , Anticorpos/imunologia , Especificidade de Anticorpos , Heterocromatina/química , Heterocromatina/imunologia , Código das Histonas/genética , Histonas/química , Histonas/imunologia , Humanos , Metilação , Nucleossomos/genética , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/genética
8.
Proc Natl Acad Sci U S A ; 115(35): 8775-8780, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104358

RESUMO

Mitotic inheritance of DNA methylation patterns is facilitated by UHRF1, a DNA- and histone-binding E3 ubiquitin ligase that helps recruit the maintenance DNA methyltransferase DNMT1 to replicating chromatin. The DNA methylation maintenance function of UHRF1 is dependent on its ability to bind chromatin, where it facilitates monoubiquitination of histone H3 at lysines 18 and 23, a docking site for DNMT1. Because of technical limitations, this model of UHRF1-dependent DNA methylation inheritance has been constructed largely based on genetics and biochemical observations querying methylated DNA oligonucleotides, synthetic histone peptides, and heterogeneous chromatin extracted from cells. Here, we construct semisynthetic mononucleosomes harboring defined histone and DNA modifications and perform rigorous analysis of UHRF1 binding and enzymatic activity with these reagents. We show that multivalent engagement of nucleosomal linker DNA and dimethylated lysine 9 on histone H3 directs UHRF1 ubiquitin ligase activity toward histone substrates. Notably, we reveal a molecular switch, stimulated by recognition of hemimethylated DNA, which redirects UHRF1 ubiquitin ligase activity away from histones in favor of robust autoubiquitination. Our studies support a noncompetitive model for UHRF1 and DNMT1 chromatin recruitment to replicating chromatin and define a role for hemimethylated linker DNA as a regulator of UHRF1 ubiquitin ligase substrate selectivity.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Cromatina , Metilação de DNA , Histonas , Modelos Biológicos , Ubiquitinação , Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cromatina/química , Cromatina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/química , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Especificidade por Substrato , Ubiquitina-Proteína Ligases
9.
Neurobiol Dis ; 119: 149-158, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30099093

RESUMO

BACKGROUND: With the capacity to modulate gene networks in an environmentally-sensitive manner, the role of epigenetic systems in mental disorders has come under intense investigation. Dysregulation of epigenetic effectors, including microRNAs and histone-modifying enzymes, may better explain the role of environmental risk factors and the observed heritability rate that cannot be fully attributed to known genetic risk alleles. Here, we aimed to identify novel epigenetic targets of the schizophrenia-associated microRNA 132 (miR-132). METHODS: Histone modifications were quantified by immunodetection in response to viral-mediated overexpression of miR-132 while a luminescent reporter system was used to validate targets of miR-132 in vitro. Genome-wide profiling, quantitative PCR and NanoSting were used to quantify gene expression in post-mortem human brains, neuronal cultures and prefrontal cortex (PFC) of mice chronically exposed to antipsychotics. Following viral-mediated depletion of Enhancer of Zeste 1 (EZH1) in the murine PFC, behaviors including sociability and motivation were assessed using a 3-chambered apparatus and forced-swim test, respectively. RESULTS: Overexpression of miR-132 decreased global histone 3 lysine 27 tri-methylation (H3K27me3), a repressive epigenetic mark. Moreover, the polycomb-associated H3K27 methyltransferase, EZH1, is regulated by miR-132 and upregulated in the PFC of schizophrenics. Unlike its homolog EZH2, expression of EZH1 in the murine PFC decreased following chronic exposure to antipsychotics. Viral-mediated depletion of EZH1 in the mouse PFC attenuated sociability, enhanced motivational behaviors, and affected gene expression pathways related to neurotransmission and behavioral phenotypes. CONCLUSIONS: EZH1 is dysregulated in schizophrenia, sensitive to antipsychotic medications, and a brain-enriched miR-132 target that controls neurobehavioral phenotypes.


Assuntos
Antipsicóticos/uso terapêutico , Epigênese Genética/fisiologia , Motivação/fisiologia , Complexo Repressor Polycomb 2/biossíntese , Esquizofrenia/metabolismo , Comportamento Social , Adulto , Idoso , Animais , Antipsicóticos/farmacologia , Linhagem Celular Tumoral , Estudos de Coortes , Epigênese Genética/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Motivação/efeitos dos fármacos , Complexo Repressor Polycomb 2/genética , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
10.
J Am Heart Assoc ; 5(12)2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28007739

RESUMO

BACKGROUND: Ischemic preconditioning (IPC) protects the heart from prolonged ischemic insult and reperfusion injury through a poorly understood mechanism. Post-translational modifications of histone residues can confer rapid and drastic switches in gene expression in response to various stimuli, including ischemia. The aim of this study was to investigate the effect of histone methylation in the response to cardiac ischemic preconditioning. METHODS AND RESULTS: We used cardiac biopsies from mice subjected to IPC to quantify global levels of 3 of the most well-studied histone methylation marks (H3K9me2, H3K27me3, and H3K4me3) with Western blot and found that H3K9me2 levels were significantly increased in the area at risk compared to remote myocardium. In order to assess which genes were affected by the increase in H3K9me2 levels, we performed ChIP-Seq and transcriptome profiling using microarray. Two hundred thirty-seven genes were both transcriptionally repressed and enriched in H3K9me2 in the area at risk of IPC mice. Of these, Mtor (Mechanistic target of rapamycin) was chosen for mechanistic studies. Knockdown of the major H3K9 methyltransferase G9a resulted in a significant decrease in H3K9me2 levels across Mtor, increased Mtor expression, as well as decreased autophagic activity in response to rapamycin and serum starvation. CONCLUSIONS: IPC confers an increase of H3K9me2 levels throughout the Mtor gene-a master regulator of cellular metabolism and a key player in the cardioprotective effect of IPC-leading to transcriptional repression via the methyltransferase G9a. The results of this study indicate that G9a has an important role in regulating cardiac autophagy and the cardioprotective effect of IPC.


Assuntos
Autofagia/genética , Repressão Epigenética , Código das Histonas/genética , Histona-Lisina N-Metiltransferase/metabolismo , Precondicionamento Isquêmico Miocárdico , Serina-Treonina Quinases TOR/genética , Animais , Western Blotting , Imunoprecipitação da Cromatina , Epigênese Genética , Metilação , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
11.
Exp Neurol ; 271: 241-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26099177

RESUMO

A hexanucleotide repeat expansion residing within the C9ORF72 gene represents the most common known cause of amyotrophic lateral sclerosis (ALS) and places the disease among a growing family of repeat expansion disorders. The presence of RNA foci, repeat-associated translation products, and sequestration of RNA binding proteins suggests that toxic RNA gain-of-function contributes to pathology while C9ORF72 haploinsufficiency may be an additional pathological factor. One viable therapeutic strategy for treating expansion diseases is the use of small molecule inhibitors of epigenetic modifier proteins to reactivate expanded genetic loci. Indeed, previous studies have established proof of this principle by increasing the drug-induced expression of expanded (and abnormally heterochromatinized) FMR1, FXN and C9ORF72 genes in respective patient cells. While epigenetic modifier proteins are increasingly recognized as druggable targets, there have been few screening strategies to address this avenue of drug discovery in the context of expansion diseases. Here we utilize a semi-high-throughput gene expression based screen to identify siRNAs and small molecule inhibitors of epigenetic modifier proteins that regulate C9ORF72 RNA in patient fibroblasts, lymphocytes and reprogrammed motor neurons. We found that several bromodomain small molecule inhibitors increase the expression of C9ORF72 mRNA and pre-mRNA without affecting repressive epigenetic signatures of expanded C9ORF72 alleles. These data suggest that bromodomain inhibition increases the expression of unexpanded C9ORF72 alleles and may therefore compensate for haploinsufficiency without increasing the production of toxic RNA and protein products, thereby conferring therapeutic value.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Linfócitos/metabolismo , Proteínas/genética , Trifosfato de Adenosina , Benzodiazepinas/farmacologia , Proteína C9orf72 , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Transformada , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Desoxicitidina/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Biblioteca Gênica , Humanos , Linfócitos/efeitos dos fármacos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Transfecção
12.
Int J Oncol ; 47(2): 465-72, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26094604

RESUMO

Metastatic chondrosarcoma of mesenchymal origin is the second most common bone malignancy and does not respond either to chemotherapy or radiation; therefore, the search for new therapies is relevant and urgent. We described recently that tumor growth inhibiting cytostatic proline-rich polypeptide 1, (PRP-1) significantly upregulated tumor suppressor miRNAs, downregulated onco-miRNAs in human chondrosarcoma JJ012 cell line, compared to chondrocytes culture. In this study we hypothesized the existence and regulation of a functional marker in cancer stem cells, correlated to peptides antiproliferative activity. Experimental results indicated that among significantly downregulated miRNA after PRP-1treatment was miRNAs 302c*. This miRNA is a part of the cluster miR302­367, which is stemness regulator in human embryonic stem cells and in certain tumors, but is not expressed in adult hMSCs and normal tissues. PRP-1 had strong inhibitory effect on viability of chondrosarcoma and multilineage induced multipotent adult cells (embryonic primitive cell type). Unlike chondrosarcoma, in glioblastoma, PRP-1 does not have any inhibitory activity on cell proliferation, because in glioblastoma miR-302-367 cluster plays an opposite role, its expression is sufficient to suppress the stemness inducing properties. The observed correlation between the antiproliferative activity of PRP-1 and its action on downregulation of miR302c explains the peptides opposite effects on the upregulation of proliferation of adult mesenchymal stem cells, and the inhibition of the proliferation of human bone giant-cell tumor stromal cells, reported earlier. PRP-1 substantially downregulated the miR302c targets, the stemness markers Nanog, c-Myc and polycomb protein Bmi-1. miR302c expression is induced by JMJD2-mediated H3K9me2 demethylase activity in its promoter region. JMJD2 was reported to be a positive regulator for Nanog. Our experimental results proved that PRP-1 strongly inhibited H3K9 activity comprised of a pool of JMJD1 and JMJD2. We conclude that inhibition of H3K9 activity by PRP-1 leads to downregulation of miR302c and its targets, defining the PRP-1 antiproliferative role.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/genética , Condrossarcoma/genética , Marcadores Genéticos/genética , MicroRNAs/genética , Peptídeos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrossarcoma/tratamento farmacológico , Regulação para Baixo , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos
13.
Epigenetics ; 9(4): 611-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24496381

RESUMO

Epigenetic proteins have recently emerged as novel anticancer targets. Among these, bromodomain and extra terminal domain (BET) proteins recognize lysine-acetylated histones, thereby regulating gene expression. Newly described small molecules that inhibit BET proteins BRD2, BRD3, and BRD4 reduce proliferation of NUT (nuclear protein in testis)-midline carcinoma, multiple myeloma, and leukemia cells in vitro and in vivo. These findings prompted us to determine whether BET proteins may be therapeutic targets in the most common primary adult brain tumor, glioblastoma (GBM). We performed NanoString analysis of GBM tumor samples and controls to identify novel therapeutic targets. Several cell proliferation assays of GBM cell lines and stem cells were used to analyze the efficacy of the drug I-BET151 relative to temozolomide (TMZ) or cell cycle inhibitors. Lastly, we performed xenograft experiments to determine the efficacy of I-BET151 in vivo. We demonstrate that BRD2 and BRD4 RNA are significantly overexpressed in GBM, suggesting that BET protein inhibition may be an effective means of reducing GBM cell proliferation. Disruption of BRD4 expression in glioblastoma cells reduced cell cycle progression. Similarly, treatment with the BET protein inhibitor I-BET151 reduced GBM cell proliferation in vitro and in vivo. I-BET151 treatment enriched cells at the G1/S cell cycle transition. Importantly, I-BET151 is as potent at inhibiting GBM cell proliferation as TMZ, the current chemotherapy treatment administered to GBM patients. Since I-BET151 inhibits GBM cell proliferation by arresting cell cycle progression, we propose that BET protein inhibition may be a viable therapeutic option for GBM patients suffering from TMZ resistant tumors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Animais , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
14.
PLoS One ; 8(11): e80975, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260524

RESUMO

Spinal cord injury is a debilitating neurological disorder that initiates a cascade of cellular events that result in a period of secondary damage that can last for months after the initial trauma. The ensuing outcome of these prolonged cellular perturbations is the induction of neuronal and glial cell death through excitotoxic mechanisms and subsequent free radical production. We have previously shown that astrocytes can directly induce oligodendrocyte death following trauma, but the mechanisms regulating this process within the oligodendrocyte remain unclear. Here we provide evidence demonstrating that astrocytes directly regulate oligodendrocyte death after trauma by inducing activation of NADPH oxidase within oligodendrocytes. Spinal cord injury resulted in a significant increase in oxidative damage which correlated with elevated expression of the gp91 phox subunit of the NADPH oxidase enzyme. Immunohistochemical analysis confirmed the presence of gp91 phox in oligodendrocytes in vitro and at 1 week following spinal cord injury. Exposure of oligodendrocytes to media from injured astrocytes resulted in an increase in oligodendrocyte NADPH oxidase activity. Inhibition of NADPH oxidase activation was sufficient to attenuate oligodendrocyte death in vitro and at 1 week following spinal cord injury, suggesting that excitotoxicity of oligodendrocytes after trauma is dependent on the intrinsic activation of the NADPH oxidase enzyme. Acute administration of the NADPH oxidase inhibitor apocynin and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate channel blocker 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione significantly improved locomotor behavior and preserved descending axon fibers following spinal cord injury. These studies lead to a better understanding of oligodendrocyte death after trauma and identify potential therapeutic targets in disorders involving demyelination and oligodendrocyte death.


Assuntos
Acetofenonas/farmacologia , Inibidores Enzimáticos/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , NADPH Oxidases/antagonistas & inibidores , Oligodendroglia/enzimologia , Traumatismos da Medula Espinal/enzimologia , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Axônios/metabolismo , Axônios/patologia , Morte Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Ativação Enzimática , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Locomoção/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Camundongos , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Estresse Oxidativo , Cultura Primária de Células , Quinoxalinas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia
15.
Mol Cell Neurosci ; 50(2): 125-35, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22561309

RESUMO

Injury to the central nervous system (CNS) can result in lifelong loss of function due in part to the regenerative failure of CNS neurons. Inhibitory proteins derived from myelin and the astroglial scar are major barriers for the successful regeneration of injured CNS neurons. Previously, we described the identification of a novel compound, F05, which promotes neurite growth from neurons challenged with inhibitory substrates in vitro, and promotes axonal regeneration in vivo (Usher et al., 2010). To identify additional regeneration-promoting compounds, we used F05-induced gene expression profiles to query the Broad Institute Connectivity Map, a gene expression database of cells treated with >1300 compounds. Despite no shared chemical similarity, F05-induced changes in gene expression were remarkably similar to those seen with a group of piperazine phenothiazine antipsychotics (PhAPs). In contrast to antipsychotics of other structural classes, PhAPs promoted neurite growth of CNS neurons challenged with two different glial derived inhibitory substrates. Our pharmacological studies suggest a mechanism whereby PhAPs promote growth through antagonism of calmodulin signaling, independent of dopamine receptor antagonism. These findings shed light on mechanisms underlying neurite-inhibitory signaling, and suggest that clinically approved antipsychotic compounds may be repurposed for use in CNS injured patients.


Assuntos
Antipsicóticos/farmacologia , Neuritos/efeitos dos fármacos , Fenotiazinas/farmacologia , Piperazinas/farmacologia , Regeneração/efeitos dos fármacos , Animais , Antipsicóticos/química , Encéfalo/fisiologia , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Cricetinae , Cricetulus , Perfilação da Expressão Gênica , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenotiazinas/química , Piperazinas/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...