Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 35(2): 393-397, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29054135

RESUMO

Traumatic brain injury (TBI) may affect the pharmacodynamics of centrally acting drugs. Paired-pulse transcranial magnetic stimulation (ppTMS) is a safe and noninvasive measure of cortical gamma-aminobutyric acid (GABA)-mediated cortical inhibition. Huperzine A (HupA) is a naturally occurring acetylcholinesterase inhibitor with newly discovered potent GABA-mediated antiepileptic capacity, which is reliably detected by ppTMS. To test whether TBI alters cerebral HupA pharmacodynamics, we exposed rats to fluid percussion injury (FPI) and tested whether ppTMS metrics of cortical inhibition differ in magnitude and temporal pattern in injured rats. Anesthetized adult rats were exposed to FPI or sham injury. Ninety minutes post-TBI, rats were injected with HupA or saline (0.6 mg/kg, intraperitoneally). TBI resulted in reduced cortical inhibition 90 min after the injury (N = 18) compared to sham (N = 13) controls (p = 0.03). HupA enhanced cortical inhibition after both sham injury (N = 6; p = 0.002) and TBI (N = 6; p = 0.02). The median time to maximum HupA inhibition in sham and TBI groups were 46.4 and 76.5 min, respectively (p = 0.03). This was consistent with a quadratic trend comparison that projects HupA-mediated cortical inhibition to last longer in injured rats (p = 0.007). We show that 1) cortical GABA-mediated inhibition, as measured by ppTMS, decreases acutely post-TBI, 2) HupA restores lost post-TBI GABA-mediated inhibition, and 3) HupA-mediated enhancement of cortical inhibition is delayed post-TBI. The plausible reasons of the latter include 1) low HupA volume of distribution rendering HupA confined in the intravascular compartment, therefore vulnerable to reduced post-TBI cerebral perfusion, and 2) GABAR dysfunction and increased AChE activity post-TBI.


Assuntos
Alcaloides/farmacologia , Lesões Encefálicas Traumáticas/fisiopatologia , Córtex Cerebral/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Inibição Neural/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Córtex Cerebral/fisiopatologia , Masculino , Inibição Neural/fisiologia , Ratos , Ratos Sprague-Dawley , Estimulação Magnética Transcraniana
2.
Med Hypotheses ; 99: 57-62, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28110700

RESUMO

Alzheimer's disease (AD) is the most frequent cause of dementia. Besides cognitive deterioration, patients with AD are prone to seizures - more than 20% of patients diagnosed with AD experience at least one unprovoked seizure and up to 7% have recurrent seizures. Although available antiepileptic drugs (AEDs) may suppress seizures in patients with AD, they may also worsen cognitive dysfunction and increase the risk of falls. On the basis of preclinical studies, we hypothesize that Huperzine A (HupA), a safe and potent acetylcholinesterase (AChE) inhibitor with potentially disease-modifying qualities in AD, may have a realistic role as an anticonvulsant in AD.


Assuntos
Alcaloides/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Sesquiterpenos/uso terapêutico , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Geneticamente Modificados , Inibidores da Colinesterase/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Modelos Animais de Doenças , Progressão da Doença , Epilepsia/tratamento farmacológico , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Humanos , Interleucina-1beta/metabolismo , Memória/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fosforilação , Risco , Fatores de Risco , Convulsões , Fator de Necrose Tumoral alfa/metabolismo
3.
PLoS One ; 8(11): e80975, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260524

RESUMO

Spinal cord injury is a debilitating neurological disorder that initiates a cascade of cellular events that result in a period of secondary damage that can last for months after the initial trauma. The ensuing outcome of these prolonged cellular perturbations is the induction of neuronal and glial cell death through excitotoxic mechanisms and subsequent free radical production. We have previously shown that astrocytes can directly induce oligodendrocyte death following trauma, but the mechanisms regulating this process within the oligodendrocyte remain unclear. Here we provide evidence demonstrating that astrocytes directly regulate oligodendrocyte death after trauma by inducing activation of NADPH oxidase within oligodendrocytes. Spinal cord injury resulted in a significant increase in oxidative damage which correlated with elevated expression of the gp91 phox subunit of the NADPH oxidase enzyme. Immunohistochemical analysis confirmed the presence of gp91 phox in oligodendrocytes in vitro and at 1 week following spinal cord injury. Exposure of oligodendrocytes to media from injured astrocytes resulted in an increase in oligodendrocyte NADPH oxidase activity. Inhibition of NADPH oxidase activation was sufficient to attenuate oligodendrocyte death in vitro and at 1 week following spinal cord injury, suggesting that excitotoxicity of oligodendrocytes after trauma is dependent on the intrinsic activation of the NADPH oxidase enzyme. Acute administration of the NADPH oxidase inhibitor apocynin and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate channel blocker 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione significantly improved locomotor behavior and preserved descending axon fibers following spinal cord injury. These studies lead to a better understanding of oligodendrocyte death after trauma and identify potential therapeutic targets in disorders involving demyelination and oligodendrocyte death.


Assuntos
Acetofenonas/farmacologia , Inibidores Enzimáticos/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , NADPH Oxidases/antagonistas & inibidores , Oligodendroglia/enzimologia , Traumatismos da Medula Espinal/enzimologia , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Axônios/metabolismo , Axônios/patologia , Morte Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Ativação Enzimática , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Locomoção/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Camundongos , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Estresse Oxidativo , Cultura Primária de Células , Quinoxalinas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia
4.
J Neuropathol Exp Neurol ; 72(8): 735-44, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23860027

RESUMO

Among the consequences of Alzheimer disease are disturbances in synaptic integrity that ultimately lead to impaired cognitive functions. Thrombospondins are extracellular matrix proteins that, in the CNS, are predominantly produced by astrocytes and have been implicated in synaptogenesis. This study examined the effects of amyloid-ß (Aß(1-42); Aß) peptide on intracellular and extracellular levels of thrombospondin 1 (TSP-1) in cultured astrocytes. Amyloid-ß caused a significant (1- to 3-fold) increase in astrocytic intracellular levels of TSP-1 (increased retention) that was associated with a reduction of its release from astrocytes. Because Aß is known to induce oxidative stress in astrocytes, we examined the effects of the antioxidants tempol and apocynin on astrocytic TSP-1 levels and release. Treatment of Aß-exposed astrocyte cultures with antioxidants significantly diminished its cellular retention and stimulated its release. Furthermore, the addition of conditioned media derived from Aß-treated cultured astrocytes that contained a reduced TSP-1 content resulted in a significant loss of synaptophysin and PSD95 in cultured neurons. These findings suggest that Aß-mediated reduction in astrocytic TSP-1 release, possibly related to oxidative stress, contributes to the loss of synaptophysin in neurons. Strategies aimed at enhancing the astrocytic release of TSP-1 may have a therapeutic benefit in Alzheimer disease.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Astrócitos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fragmentos de Peptídeos/farmacologia , Sinaptofisina/metabolismo , Trombospondina 1/metabolismo , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Meios de Cultivo Condicionados/química , Proteína 4 Homóloga a Disks-Large , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , NADPH Oxidases/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos , Trombospondina 1/genética , Fatores de Tempo
5.
J Neurosci Res ; 91(6): 828-37, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23553703

RESUMO

Spinal cord injury results in irreversible paralysis, axonal injury, widespread oligodendrocyte death, and white matter damage. Although the mechanisms underlying these phenomena are poorly understood, previous studies from our laboratory indicate that inhibiting activation of the nuclear factor-κB transcription factor in astrocytes reduces white matter damage and improves functional recovery following spinal cord injury. In the current study, we demonstrate that activation of the nuclear factor-κB transcription factor within astrocytes results in a significant increase in oligodendrocyte death following trauma by reducing extracellular zinc levels and inducing glutamate excitotoxicity. By using an ionotropic glutamate receptor antagonist (CNQX), we show that astroglial nuclear factor-κB-mediated oligodendrocyte death is dependent on glutamate signaling despite no change in extracellular glutamate concentrations. Further analysis demonstrated a reduction in levels of extracellular zinc in astrocyte cultures with functional nuclear factor-κB signaling following trauma. Cotreatment of oligodendrocytes with glutamate and zinc showed a significant increase in oligodendrocyte toxicity under low-zinc conditions, suggesting that the presence of zinc at specific concentrations can prevent glutamate excitotoxicity. These studies demonstrate a novel role for zinc in regulating oligodendrocyte excitotoxicity and identify new therapeutic targets to prevent oligodendrocyte cell death in central nervous system trauma and disease.


Assuntos
Morte Celular/fisiologia , Líquido Extracelular/química , Oligodendroglia/metabolismo , Traumatismos da Medula Espinal/metabolismo , Zinco/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Líquido Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Oligodendroglia/patologia , Traumatismos da Medula Espinal/patologia
6.
Glia ; 60(4): 639-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22275133

RESUMO

Schwann cells (SCs) are crucial for peripheral nerve development and regeneration; however, the intrinsic regulatory mechanisms governing postinjury responses are poorly understood. Activation and deacetylation of nuclear factor-κB (NF- κB) in SCs have been implicated as prerequisites for peripheral nerve myelination. Using GFAP-IκBα-dn mice in which NF- κB transcriptional activation is inhibited in SCs, we found no discernable differences in the quantity or structure of myelinated axons in adult facial nerves. Following crush injury, axonal regeneration was impaired at 31 days and significantly enhanced at 65 days in transgenic animals. Compact remyelination and Remak bundle organization were significantly compromised at 31 days and restored by 65 days post injury. Together, these data indicate that inhibition of NF-κB activation in SCs transiently delays axonal regeneration and compact remyelination. Manipulating the temporal activation of nuclear factor-κB in Schwann cells may offer new therapeutic avenues for PNS and CNS regeneration.


Assuntos
Proteínas I-kappa B/metabolismo , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Células de Schwann/metabolismo , Degeneração Walleriana/patologia , Análise de Variância , Animais , Axotomia/métodos , Antígeno CD11b/metabolismo , Modelos Animais de Doenças , Traumatismos do Nervo Facial/complicações , Traumatismos do Nervo Facial/etiologia , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas I-kappa B/genética , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Neurônios Motores/patologia , Proteína P0 da Mielina/metabolismo , Inibidor de NF-kappaB alfa , Proteínas de Neurofilamentos/metabolismo , Tempo de Reação/genética , Recuperação de Função Fisiológica/genética , Células de Schwann/patologia , Células de Schwann/ultraestrutura , Estilbamidinas , Fatores de Tempo , Degeneração Walleriana/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...