Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 70(6): 1650-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25645206

RESUMO

OBJECTIVES: Pseudomonas aeruginosa is an important nosocomial pathogen that can cause a wide range of infections resulting in significant morbidity and mortality. Avibactam, a novel non-ß-lactam ß-lactamase inhibitor, is being developed in combination with ceftazidime and has the potential to be a valuable addition to the treatment options for the infectious diseases practitioner. We compared the frequency of resistance development to ceftazidime/avibactam in three P. aeruginosa strains that carried derepressed ampC alleles. METHODS: The strains were incubated in the presence of increasing concentrations of ceftazidime with a fixed concentration (4 mg/L) of avibactam to calculate the frequency of spontaneous resistance. The mutants were characterized by WGS to identify the underlying mechanism of resistance. A representative mutant protein was characterized biochemically. RESULTS: The resistance frequency was very low in all strains. The resistant variants isolated exhibited ceftazidime/avibactam MIC values that ranged from 64 to 256 mg/L. All of the mutants exhibited changes in the chromosomal ampC gene, the majority of which were deletions of various sizes in the Ω-loop region of AmpC. The mutant enzyme that carried the smallest Ω-loop deletion, which formed a part of the avibactam-binding pocket, was characterized biochemically and found to be less effectively inhibited by avibactam as well as exhibiting increased hydrolysis of ceftazidime. CONCLUSIONS: The development of high-level resistance to ceftazidime/avibactam appears to occur at low frequency, but structural modifications in AmpC can occur that impact the ability of avibactam to inhibit the enzyme and thereby protect ceftazidime from hydrolysis.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/biossíntese , Ceftazidima/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Seleção Genética , Resistência beta-Lactâmica , beta-Lactamases/biossíntese , Proteínas de Bactérias/genética , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Taxa de Mutação , Pseudomonas aeruginosa/genética , beta-Lactamases/genética
2.
J Antimicrob Chemother ; 70(5): 1420-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25634992

RESUMO

OBJECTIVES: The spread of NDM-1 amongst Enterobacteriaceae has highlighted a significant threat to the clinical management of serious infections. The combination of aztreonam and avibactam, a non-ß-lactam ß-lactamase inhibitor, may provide a much-needed therapeutic alternative. This combination was potent against most NDM-containing Enterobacteriaceae, although activity was diminished against many Escherichia coli isolates. These E. coli isolates were characterized to elucidate the mechanism of decreased susceptibility to aztreonam/avibactam. METHODS: MIC determinations were performed using broth microdilution, and whole-genome sequencing was performed to enable sequence-based analyses. RESULTS: The decreased susceptibility was not due to avibactam being unable to inhibit the serine ß-lactamases found in the E. coli isolates. Rather, it was manifested by a four-amino-acid insertion in PBP3. This same insertion was also found in non-NDM-containing E. coli that had reduced susceptibility to aztreonam/avibactam. Construction of an isogenic mutant confirmed that this insertion resulted in decreased susceptibility to aztreonam and several cephalosporins, but had no impact on carbapenem potency. Structural analysis suggests that this insertion will impact the accessibility of the ß-lactam drugs to the transpeptidase pocket of PBP3. CONCLUSIONS: The acquisition of ß-lactamases is the predominant mechanism of ß-lactam resistance in Enterobacteriaceae. We have demonstrated that small PBP3 changes will affect the susceptibility to a broad range of ß-lactams. These changes were identified in multiple MLST lineages of E. coli, and were enriched in NDM-containing isolates. However, they were not present in other key species of Enterobacteriaceae despite significant conservation among the PBP3 proteins.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Aztreonam/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/genética , Resistência beta-Lactâmica , beta-Lactamases/metabolismo , Biologia Computacional , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Genoma Bacteriano , Humanos , Testes de Sensibilidade Microbiana , Mutagênese Insercional , Análise de Sequência de DNA
3.
Antimicrob Agents Chemother ; 59(1): 467-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385112

RESUMO

AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, ß-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development.


Assuntos
Antibacterianos/farmacologia , Barbitúricos/farmacologia , DNA Girase/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Compostos de Espiro/farmacologia , Inibidores da Topoisomerase II/farmacologia , Formas Bacterianas Atípicas/efeitos dos fármacos , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Isoxazóis , Testes de Sensibilidade Microbiana , Morfolinas , Oxazolidinonas
4.
J Antimicrob Chemother ; 69(11): 2942-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24986496

RESUMO

BACKGROUND: Extended-spectrum AmpC (ESAC) ß-lactamase enzymes, which are either chromosomally encoded or plasmid encoded, have minor structural changes that broaden their substrate hydrolysis profile. The derepressed AmpC enzyme found once in Enterobacter cloacae CHE was shown to contain a six residue deletion in the H-10 helix in close proximity to the active site. Avibactam is a non-ß-lactam inhibitor of Ambler class A, class C and some class D ß-lactamases that is in clinical development with several ß-lactam agents. It has been shown to inhibit AmpC enzymes, but its microbiological activity against isolates carrying different ESAC enzymes is less well understood. METHODS: MICs were determined using the broth microdilution technique. RT-PCR analyses were performed to measure the level of ampC expression and whole genome sequencing was performed to enable sequence-based analyses. RESULTS: Structural analyses of avibactam bound to a representative AmpC ß-lactamase suggested that the H-10 helix deletion would impact the potency of the inhibitor. Under standard conditions, the ceftazidime/avibactam and ceftaroline/avibactam MIC values for E. cloacae CHE were 64 and 4 mg/L, respectively, representing a significant decrease in susceptibility over control E. cloacae isolates. However, use of higher avibactam concentrations restored the susceptibility of E. cloacae CHE in a dose-dependent manner. Comparison with other E. cloacae isolates carrying derepressed AmpC enzymes suggested that this difference in inhibition by avibactam was unrelated to the level of AmpC being produced. CONCLUSIONS: The E. cloacae CHE ESAC enzyme is inhibited less efficiently by avibactam than other E. cloacae AmpC proteins due to a subtle rearrangement of the binding site. Although the variants are not commonly observed, the different ESAC enzymes may be inhibited to varied extents by avibactam.


Assuntos
Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Enterobacter cloacae/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterobacter cloacae/enzimologia , Enterobacter cloacae/genética , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , beta-Lactamases/genética , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...