Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wellcome Open Res ; 6: 261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35299708

RESUMO

Hundreds of different mathematical models have been proposed for describing electrophysiology of various cell types. These models are quite complex (nonlinear systems of typically tens of ODEs and sometimes hundreds of parameters) and software packages such as the Cancer, Heart and Soft Tissue Environment (Chaste) C++ library have been designed to run simulations with these models in isolation or coupled to form a tissue simulation. The complexity of many of these models makes sharing and translating them to new simulation environments difficult. CellML is an XML format that offers a widely-adopted solution to this problem. This paper specifically describes the capabilities of two new Python tools: the cellmlmanip library for reading and manipulating CellML models; and chaste_codegen, a CellML to C++ converter. These tools provide a Python 3 replacement for a previous Python 2 tool (called PyCML) and they also provide additional new features that this paper describes. Most notably, they can generate analytic Jacobians without the use of proprietary software, and also find singularities occurring in equations and automatically generate and apply linear approximations to prevent numerical problems at these points.

2.
Clin Pharmacol Ther ; 105(2): 466-475, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30151907

RESUMO

The International Council on Harmonization (ICH) S7B and E14 regulatory guidelines are sensitive but not specific for predicting which drugs are pro-arrhythmic. In response, the Comprehensive In Vitro Proarrhythmia Assay (CiPA) was proposed that integrates multi-ion channel pharmacology data in vitro into a human cardiomyocyte model in silico for proarrhythmia risk assessment. Previously, we reported the model optimization and proarrhythmia metric selection based on CiPA training drugs. In this study, we report the application of the prespecified model and metric to independent CiPA validation drugs. Over two validation datasets, the CiPA model performance meets all pre-specified measures for ranking and classifying validation drugs, and outperforms alternatives, despite some in vitro data differences between the two datasets due to different experimental conditions and quality control procedures. This suggests that the current CiPA model/metric may be fit for regulatory use, and standardization of experimental protocols and quality control criteria could increase the model prediction accuracy even further.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/epidemiologia , Simulação por Computador , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos/métodos , Canal de Potássio ERG1/efeitos dos fármacos , Humanos , Canais Iônicos/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Reprodutibilidade dos Testes , Medição de Risco , Sensibilidade e Especificidade
3.
Front Physiol ; 8: 986, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311950

RESUMO

Human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) have applications in disease modeling, cell therapy, drug screening and personalized medicine. Computational models can be used to interpret experimental findings in iPSC-CMs, provide mechanistic insights, and translate these findings to adult cardiomyocyte (CM) electrophysiology. However, different cell lines display different expression of ion channels, pumps and receptors, and show differences in electrophysiology. In this exploratory study, we use a mathematical model based on iPSC-CMs from Cellular Dynamic International (CDI, iCell), and compare its predictions to novel experimental recordings made with the Axiogenesis Cor.4U line. We show that tailoring this model to the specific cell line, even using limited data and a relatively simple approach, leads to improved predictions of baseline behavior and response to drugs. This demonstrates the need and the feasibility to tailor models to individual cell lines, although a more refined approach will be needed to characterize individual currents, address differences in ion current kinetics, and further improve these results.

4.
Wellcome Open Res ; 1: 6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27918599

RESUMO

Dose-response (or 'concentration-effect') relationships commonly occur in biological and pharmacological systems and are well characterised by Hill curves. These curves are described by an equation with two parameters: the inhibitory concentration 50% (IC50); and the Hill coefficient. Typically just the 'best fit' parameter values are reported in the literature. Here we introduce a Python-based software tool, PyHillFit , and describe the underlying Bayesian inference methods that it uses, to infer probability distributions for these parameters as well as the level of experimental observation noise. The tool also allows for hierarchical fitting, characterising the effect of inter-experiment variability. We demonstrate the use of the tool on a recently published dataset on multiple ion channel inhibition by multiple drug compounds. We compare the maximum likelihood, Bayesian and hierarchical Bayesian approaches. We then show how uncertainty in dose-response inputs can be characterised and propagated into a cardiac action potential simulation to give a probability distribution on model outputs.

5.
J Mol Cell Cardiol ; 96: 49-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26611884

RESUMO

Cardiac electrophysiology models have been developed for over 50years, and now include detailed descriptions of individual ion currents and sub-cellular calcium handling. It is commonly accepted that there are many uncertainties in these systems, with quantities such as ion channel kinetics or expression levels being difficult to measure or variable between samples. Until recently, the original approach of describing model parameters using single values has been retained, and consequently the majority of mathematical models in use today provide point predictions, with no associated uncertainty. In recent years, statistical techniques have been developed and applied in many scientific areas to capture uncertainties in the quantities that determine model behaviour, and to provide a distribution of predictions which accounts for this uncertainty. In this paper we discuss this concept, which is termed uncertainty quantification, and consider how it might be applied to cardiac electrophysiology models. We present two case studies in which probability distributions, instead of individual numbers, are inferred from data to describe quantities such as maximal current densities. Then we show how these probabilistic representations of model parameters enable probabilities to be placed on predicted behaviours. We demonstrate how changes in these probability distributions across data sets offer insight into which currents cause beat-to-beat variability in canine APs. We conclude with a discussion of the challenges that this approach entails, and how it provides opportunities to improve our understanding of electrophysiology.


Assuntos
Potenciais de Ação , Coração/fisiologia , Modelos Biológicos , Miocárdio/metabolismo , Algoritmos , Animais , Cães , Fenômenos Eletrofisiológicos , Canais Iônicos/metabolismo , Potenciais da Membrana
6.
Comput Cardiol (2010) ; 43: 1089-1092, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37551270

RESUMO

There are many sources of uncertainty in the recording and modelling of membrane action potentials (APs) from cardiomyocytes. For example, there are measurement, parameter, and model uncertainties. There is also extrinsic variability between cells, and intrinsic beat-to-beat variability within a single cell. These combined uncertainties and variability make it very difficult to extrapolate predictions from these models, since current AP models have single parameter values and thus produce a single AP trace. We aim to re-parameterise existing AP models to fit experimental data, and to quantify uncertainty associated with ion current densities when measuring and modelling these APs. We then wish to propagate this uncertainty into model predictions, such as ion channel block effected by a pharmaceutical compound. We perform an in silico study using synthetic data generated from different sets of parameters. We then 'forget' these parameter values and re-infer their distributions using hierarchical Markov chain Monte Carlo methods. We find that we can successfully infer the 'correct' distributions for most ion current densities for each AP trace, along with an approximation to the higher-level distribution from which these parameter values were sampled. There is, however, some level of unidentifiability amongst some of the current densities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...