Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 45(23): 6350-6353, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258809

RESUMO

We present a carrier-envelope offset (CEO) stable ytterbium-doped fiber chirped-pulse amplification system employing the technology of coherent beam combining and delivering more than 1 kW of average power at a pulse repetition rate of 80 MHz. The CEO stability of the system is 220 mrad rms, characterized out-of-loop with an f-to-2f interferometer in a frequency offset range of 10 Hz to 20 MHz. The high-power amplification system boosts the average power of the CEO stable oscillator by five orders of magnitude while increasing the phase noise by only 100 mrad. No evidence of CEO noise deterioration due to coherent beam combining is found. Low-frequency CEO fluctuations at the chirped-pulse amplifier are suppressed by a "slow loop" feedback. To the best of our knowledge, this is the first demonstration of a coherently combined laser system delivering an outstanding average power and high CEO stability at the same time.

2.
J Phys Chem A ; 124(14): 2755-2767, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32119781

RESUMO

Exploring the formation of diatomic radicals in femtosecond plasmas is important to establish the most dominant kinetic pathways following ionization and dissociation of small molecules. In this work, cyano radical formation has been studied from bromoform, acetonitrile, and methanol in nitrogen and argon plasmas created with a focused femtosecond laser beam operating at 100 kHz repetition rate and 1030 nm wavelength with 43 fs pulse length and 250 µJ pulse energy. Time-resolved Fourier transform fluorescence spectroscopy was applied in the ultraviolet-visible (UV-vis) spectral range for the characterization of the rotational and vibrational temperatures of the CN(B) radicals via fitting the experimental data. The high repetition rate of the laser allows efficient coupling with the step-scan Fourier transform spectroscopy method. Coulomb explosion at the very high intensity (∼1016 W/cm2) resulted in the formation of nascent atoms, ions, and electrons. The condensation reactions of carbon and reactive nitrogen species resulted in the formation of CN(B2Σ+) radicals and C2(d3Πg) dicarbon molecules/radicals. The CN(B) radicals were formed at the highest concentration in the case of bromoform because the weak carbon-bromine bonds resulted in reactive carbon atoms and CH radicals, which are reactive precursors for the CN(B) radical formation. In the case of acetonitrile, immediate production of CN(B) is observed with nanosecond resolution, which suggests that the CN is formed either via photodetachment or via roaming reaction associated with the Coulomb explosion of the parent molecule. The nascent rotational temperature was very high (∼6000-8500 K) and rapidly decreased in all instances within 40 ns with bromoform and acetonitrile. The highest vibrational temperature (∼7800 K) was observed in an acetonitrile/Ar mixture that decreased in about 30 ns and then increased in the observed time window. The vibrational temperature increased in all samples between 30 and 200 ns. The time dependence of fluorescence is described with a monoexponential decay in the case of acetonitrile/Ar and with biexponential decays in all other instances in the 0-250 mbar total pressure range. The shorter time constant is close to the radiative lifetime of CN(B) emission (∼60-80 ns), which can be attributed to the CN(B) radicals produced in the first few collisions at lower pressures. The longer CN(B) emission is from CN(B) created by slower chemical reactions involving carbon atoms, C2 radicals, and reactive nitrogen-containing species.

3.
Opt Express ; 25(6): 6690-6699, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28381013

RESUMO

The spectral phase noise of a cryogenically cooled Ti:Sapphire amplifier was analyzed by spectrally resolved interferometry. Since a relative phase difference measurement is performed, the effect of the amplifier stage can be determined with high precision. Contributions of the cooling system to the spectral phase noise were found to be below 50 mrad for both the vacuum pumps and the cryogenic system. The carrier-envelope phase noise of thermal and mechanical origin was also determined for different repetition rates of laser operation. Mechanical vibrational spectra were recorded by an accelerometer for different stages of operation and compared to the interferometric phase noise measurements.

4.
Opt Lett ; 39(20): 5913-6, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25361118

RESUMO

Carrier-envelope phase (CEP) drift of a pulse train of 2 ps pulses has been measured by a multiple beam interferometer. The round trip time of the interferometer is slightly mistuned from the pulse sequence, leading to spectral interference fringes. We extract the pulse-to-pulse CEP drift from the position of the spectral interference pattern. The length of the interferometer has been actively stabilized to ±10 nm, which sets the ultimate limit on the accuracy of the measurement to 78 mrad, while the CEP-drift (rms) noise of the measurement was 127 mrad (at 800 nm).

5.
Appl Opt ; 52(34): 8376-80, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24513841

RESUMO

We report on the first demonstration, to the best of our knowledge, of the locking of a Fabry-Perot cavity with a finesse of 28,000 in the pulsed regime. The system is based on a stable picosecond oscillator, an ultrastable cavity with high-reflection mirrors, and an all-numerical feedback system that allows efficient and independent control of the repetition rate and the pulse to pulse carrier-to-envelop phase drift (CEP). We show that the carrier to envelop phase can have a dramatic effect even for pulses with hundreds of cycles. Moreover, we have succeeded in unambiguously measuring the CEP of a 2 ps pulse train. Finally, we discuss the potential of our findings to reach the MW average power level stored in an external cavity enhancement architecture.

6.
Opt Lett ; 37(5): 836-8, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22378410

RESUMO

A bandwidth-independent and linear interferometric method for the measurement of the carrier-envelope phase drift of ultrashort pulse trains is demonstrated. The pulses are temporally overlapped in a resonant multiple-beam interferometer. From the position of the spectral interference pattern, the relative carrier-envelope phase between two subsequent oscillator pulses is obtained at data acquisition rates up to 200 Hz. Cross calibration has been performed by f-to-2f interferometry in two independent experiments. The optical length of the interferometer has been actively stabilized, leading to a phase jitter of 117 mrad (rms). These results indicate a reduced noise and quicker data acquisition in comparison with previous linear methods for measuring the carrier-envelope phase drift.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...