Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 10(11): 501, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33163320

RESUMO

The Trichoderma harzianum l-methioninase was purified 7.15-fold with a recovery of 47.9% and the specific activity of 74.4 U/mg of protein. The purified enzyme has an apparent molecular mass of 48 kDa on SDS-PAGE and exhibited maximum activity at pH 8 and 35 °C. The enzyme was catalytically stable below 50 °C and at a pH range of 6.0-8.5. The thermal inactivation of l-methioninase exhibited first-order kinetics with the k value between 5.71 × 10-4 min-1 and 1.83 × 10-2 min-1. The studies on thermodynamic parameters of l-methioninase indicated the compaction and aggregation of the enzyme molecule during denaturation. This is the first report of thermodynamic analysis of thermal inactivation in l-methioninase. The enzyme activity was enhanced by Li+ and inhibited by Cu2+, Co2+, Fe2+, Hydroxylamine and PMSF. The purified enzyme showed K m , V max and k cat value of 1.19 mM, 21.27 U/mg/min and 16.11 s-1, respectively. The l-methioninase inhibited the growth of human cell lines hepatocellular carcinoma (Hep-G2) and breast carcinoma (MCF-7) with IC50 values of 14.12 µg/ml and 20.07 µg/ml, respectively. The in vivo antitumor activity of l-methioninase was evaluated against DAL cell lines bearing in Swiss albino mice. The enzyme effectively reduced tumor volume, packed cell volume, viable cell count and restored hematological parameters, serum enzyme and lipid profile to normal levels compared to DAL control mice. The present study has demonstrated the high efficacy of Trichoderma harzianum l-methioninase against cancer cell lines in vitro and in vivo conditions. The purified l-methioninase has significant thermal stability and better catalytic properties than the enzyme purified from other sources.

2.
3 Biotech ; 9(9): 323, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31406645

RESUMO

The present study reports the optimized production and purification of an extremely active fibrinolytic enzyme from newly isolated marine bacterium Fictibacillus sp. strain SKA27, with a specific activity of 125,107.85 U/mg and an apparent molecular weight of 28 kDa on SDS-PAGE. Wheat bran extract used for submerged production proved to be highly beneficial and enhanced fibrinolytic enzyme production when combined with yeast extract and CaCl2. Optimization of culture media by response surface methodology (RSM) resulted in high root mean square error (RMSE), which led to the training of a back propagation multilayer artificial neural network (ANN) with 3-5-1 topology for better prediction quality. The prediction and optimization capabilities of regression and ANN were critically examined and ANN displayed higher proficiency with R 2 of 0.99 and RMSE of 2.0 compared to 0.98 R 2 and 48.9 RMSE of the regression model. An adept ANN linked genetic algorithm (GA) optimized the medium components to achieve 1.8-fold higher enzyme production (4175.41 U/mL). Further, a new and improved in vitro qualitative analysis displayed high specificity of purified enzyme to fibrin.

3.
OMICS ; 21(7): 390-403, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28692419

RESUMO

Chronic exposure to cigarette smoke markedly increases the risk for lung cancer. Regulation of gene expression at the post-transcriptional level by miRNAs influences a variety of cancer-related interactomes. Yet, relatively little is known on the effects of long-term cigarette smoke exposure on miRNA expression and gene regulation. NCI-H292 (H292) is a cell line sensitive to cigarette smoke with mucoepidermoid characteristics in culture. We report, in this study, original observations on long-term (12 months) cigarette smoke effects in the H292 cell line, using microarray-based miRNA expression profiling, and stable isotopic labeling with amino acids in cell culture-based quantitative proteomic analysis. We identified 112 upregulated and 147 downregulated miRNAs (by twofold) in cigarette smoke-treated H292 cells. The liquid chromatography-tandem mass spectrometry analysis identified 3,959 proteins, of which, 303 proteins were overexpressed and 112 proteins downregulated (by twofold). We observed 39 miRNA target pairs (proven targets) that were differentially expressed in response to chronic cigarette smoke exposure. Gene ontology analysis of the target proteins revealed enrichment of proteins in biological processes driving metabolism, cell communication, and nucleic acid metabolism. Pathway analysis revealed the enrichment of phagosome maturation, antigen presentation pathway, nuclear factor erythroid 2-related factor 2-mediated oxidative stress response, and cholesterol biosynthesis pathways in cigarette smoke-exposed cells. In conclusion, this report makes an important contribution to knowledge on molecular changes in a lung cell line in response to long term cigarette smoke exposure. The findings might inform future strategies for drug target, biomarker and diagnostics innovation in lung cancer, and clinical oncology. These observations also call for further research on the extent to which continuing or stopping cigarette smoking in patients diagnosed with lung cancer translates into molecular and clinical outcomes.


Assuntos
Fumar Cigarros/efeitos adversos , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , Biomarcadores/análise , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/diagnóstico
4.
Nature ; 509(7502): 575-81, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24870542

RESUMO

The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples, including 17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells, resulted in identification of proteins encoded by 17,294 genes accounting for approximately 84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream open reading frames. This large human proteome catalogue (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.


Assuntos
Proteoma/metabolismo , Proteômica , Adulto , Células Cultivadas , Bases de Dados de Proteínas , Feto/metabolismo , Análise de Fourier , Perfilação da Expressão Gênica , Genoma Humano/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Internet , Espectrometria de Massas , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Especificidade de Órgãos , Biossíntese de Proteínas , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteoma/análise , Proteoma/química , Proteoma/genética , Pseudogenes/genética , RNA não Traduzido/genética , Reprodutibilidade dos Testes , Regiões não Traduzidas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...