Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 22(24): 30377-86, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606966

RESUMO

Multi-core fibers (MCFs) with coupled-cores are attractive large-mode area (LMA) specialty fiber designs that support the propagation of a few transverse modes often called supermodes (SMs). Compared to other LMA fibers, the uniqueness of MCF arises from the higher degrees of design space offered by a multitude of core-array geometries, resulting in extended flexibility to tailor SM properties. To date, the use of MCF as gain media has focused on lasers that operate in only one selected SM, typically the lowest order in-phase SM, which considerably limited the potential of these multi-core structures. Here, we expand the potential of MCF lasers by investigating multi-SM amplification and lasing schemes. Amplifier and laser systems using a 7 coupled-cores Yb-doped MCF as gain medium were successfully designed and assembled. Individual SM could be decomposed using the correlation filter technique mode analysis and the modal amplification factors (γi) were recorded. With access to amplification characteristics of individual transverse modes, a monolithic MCF laser was demonstrated that operates simultaneously on the two SMs carrying the highest optical gain.


Assuntos
Lasers , Fibras Ópticas , Luz
2.
Opt Express ; 20(22): 24295-303, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23187192

RESUMO

We report the influence of higher order modes (HOMs) in large mode fibers operation in Q-switched oscillator configurations at ~2 µm wavelength. S(2) measurements confirm guiding of LP(11) and LP(02) fiber modes in a large mode area (LMA) step-index fiber, whereas a prototype photonic crystal fiber (PCF) provides nearly single-mode performance with a small portion of light in the LP(11) mode. The difference in HOM content leads to a significant difference in Q-switched oscillator performance. In the step-index fiber, the percentage of cladding light increases by 20% to >40% with increasing pulse energy to ~250 µJ. We accredit this degradation to saturation of the gain in the fundamental mode leading to more light generated in the HOMs, which is eventually converted into cladding light. No such degradation is seen in PCF laser system for >400 µJ energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...